Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:50:22.489Z Has data issue: false hasContentIssue false

Locus coeruleus reports changes in environmental contingencies

Published online by Cambridge University Press:  05 January 2017

Susan J. Sara*
Affiliation:
Centre for Interdisciplinary Research in Biology, CNRS UMR 7142, Collège de France, 75005 Paris, [email protected]

Abstract

The GANE (glutamate amplifies noradrenergic effects) model proposed by Mather et al. attempts to explain how norepinephrine enhances processing in highly activated brain regions. Careful perusal of the sparse data available from recording studies in animals reveals that noradrenergic neurons are excited mainly by any change in the environment – a salient, novel, or unexpected sensory stimulus or a change in behavioral contingencies. This begets the “network reset hypothesis” supporting the notion that norepinephrine promotes rapid cognitive and behavioral adaption

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aston-Jones, G. & Bloom, F. E. (1981) Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. The Journal of Neuroscience 1(8):887900.Google Scholar
Aston-Jones, G., Rajkowski, J. & Kubiak, P. (1997) Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience 80(3):697715. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9276487.Google Scholar
Bosman, C. A., Lansink, C. S. & Pennartz, C. M. (2014) Functions of gamma-band synchronization in cognition: From single circuits to functional diversity across cortical and subcortical systems. European Journal of Neuroscience 39:1982–99.Google Scholar
Bouret, S. & Sara, S. J. (2004) Reward expectation, orientation of attention and locus coeruleus–medial frontal cortex interplay during learning. European Journal of Neuroscience 20(3):791802. Available at: http://doi.org/10.1111/j.1460-9568.2004.03526.x.Google Scholar
Bouret, S. & Sara, S. J. (2005) Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences 28(11):574–82. Available at: http://dx.doi.org/10.1016/j.tins.2005.09.002.CrossRefGoogle Scholar
Corbetta, M., Patel, G. & Shulman, G. L. (2008) The reorienting system of the human brain: From environment to theory of mind. Neuron 58(3):306–24.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1991) The prefrontal cortex and its relation to behavior. Progress in Brain Research 87:201–11.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1990) Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Progress in Brain Research 85:325–35.CrossRefGoogle ScholarPubMed
Hervé-Minvielle, A. & Sara, S. J. (1995) Rapid habituation of auditory responses of locus coeruleus cells in anesthetized and awake rats. NeuroReport 6:4550.Google Scholar
O'Keefe, J. & Dostrovsky, J. (1971) The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34:171–75.Google Scholar
Poe, G. & Sara, S. J. (2014) Locus coeruleus activity time-locked to hippocampal rhythms during sleep. Program No. 652.16 2014 Neuroscience Meeting Planner, Washington, DC: Society for Neuroscience. OnlineGoogle Scholar
Rajkowski, J., Majczynski, H., Clayton, E. & Aston-Jones, G. (2004) Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. Journal of Neurophysiology 92(1):361–71.CrossRefGoogle Scholar
Sara, S. J. (2015) Locus coeruleus in time with the making of memories. Current Opinion in Neurobiology 35:8794.CrossRefGoogle ScholarPubMed
Sara, S. J. & Bouret, S. (2012) Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 76(1):130–41. doi: 10.1016/j.neuron.2012.09.011.CrossRefGoogle ScholarPubMed
Sara, S. J. & Segal, M. (1991) Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: Implications for cognition. Progress in Brain Research 88:571–85.Google Scholar
Vankov, A., Hervé-Minvielle, A. & Sara, S. J. (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. European Journal of Neuroscience 7(6):1180–87. doi: 10.1111/j.1460-9568.1995.tb01108.x.Google Scholar
Von der Gablentz, J., Tempelmann, C., Münte, T. & Heldmann, M. (2015) Performance monitoring and behavioral adaptation during task switching: An fMRI study. Neuroscience 285:227–35.Google Scholar