Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T22:40:27.432Z Has data issue: false hasContentIssue false

GANEing traction: The broad applicability of NE hotspots to diverse cognitive and arousal phenomena

Published online by Cambridge University Press:  05 January 2017

Mara Mather
Affiliation:
Davis School of Gerontology, University of Southern California, Los Angeles, CA [email protected]
David Clewett
Affiliation:
Neuroscience Graduate Program, University of Southern California, Los Angeles, CA [email protected]://dornsifecms.usc.edu/david-clewett-neuroscience/
Michiko Sakaki
Affiliation:
School of Psychology and Clinical Language Sciences, University of Reading, Reading RGX 7BE, United [email protected]://www.reading.ac.uk/psychology/about/staff/m-sakaki.aspx
Carolyn W. Harley
Affiliation:
Professor Emeritus, Memorial University of Newfoundland, St. John's, NL A1C 5S7, [email protected]://www.mun.ca/psychology/bio/harley.php

Abstract

The GANE (glutamate amplifies noradrenergic effects) model proposes that local glutamate–norepinephrine interactions enable “winner-take-more” effects in perception and memory under arousal. A diverse range of commentaries addressed both the nature of this “hotspot” feedback mechanism and its implications in a variety of psychological domains, inspiring exciting avenues for future research.

Type
Author's Response
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, S. & Carbon, C. C. (2014) The fluency amplification model: Fluent stimuli show more intense but not evidently more positive evaluations. Acta Psychologica 148:195203.CrossRefGoogle Scholar
Anderson, A. K., Christoff, K., Panitz, D., De Rosa, E. & Gabrieli, J. D. (2003) Neural correlates of the automatic processing of threat facial signals. The Journal of Neuroscience 23(13):5627–33.CrossRefGoogle ScholarPubMed
Anderson, A. K., Wais, P. E. & Gabrieli, J. D. E. (2006) Emotion enhances remembrance of neutral events past. Proceedings of the National Academy of Sciences of the United States of America 103(5):1599–604. doi: 10.1073/pnas.0506308103.Google Scholar
Arnsten, A. F., Raskind, M. A., Taylor, F. B. & Connor, D. F. (2015a) The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress 1:8999.CrossRefGoogle ScholarPubMed
Arnsten, A. F., Wang, M. J. & Paspalas, C. D. (2012) Neuromodulation of thought: Flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76(1):223–39.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T. (2011) Catecholamine influences on dorsolateral prefrontal cortical networks. Biological Psychiatry 69(12):e89e99. Available at: http://www.sciencedirect.com/science/article/pii/S0006322311001193.CrossRefGoogle ScholarPubMed
Aston-Jones, G. & Cohen, J. D. (2005) An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience 28:403–50. http://doi.org/10.1146/annurev.neuro.28.061604.135709.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J. & Cohen, J. (1999) Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry 46(9):1309–20.CrossRefGoogle ScholarPubMed
Bach, D. R., Talmi, D., Hurlemann, R., Patin, A. & Dolan, R. J. (2011) Automatic relevance detection in the absence of a functional amygdala. Neuropsychologia 49(5):1302–305.Google Scholar
Baeyens, F., Field, A. P. & Houwer, J. D. (2005) Associative learning of likes and dislikes: Some current controversies and possible ways forward. Cognition and Emotion 19(2):161–74.Google Scholar
Ballarini, F., Moncada, D., Martinez, M. C., Alen, N. & Viola, H. (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proceedings of the National Academy of Sciences of the United States of America 106(34):14599–604.Google Scholar
Barnacle, , Schaefer, , Tsvilis, & Talmi, , in preparation.Google Scholar
Barrett, L. F. & Simmons, W. K. (2015) Interoceptive predictions in the brain. Nature Reviews Neuroscience 16:419–29. doi: 10.1038/nrn3950.Google Scholar
Barsegyan, A., McGaugh, J. L. & Roozendaal, B. (2014) Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory. Frontiers in Behavioral Neuroscience 8:Article 160.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Damasio, A. R. & Lee, G. P. (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience 19(13):5473–81.Google Scholar
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C. & Damasio, A. R. (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269(5227):1115–18.Google Scholar
Berridge, C. W. & Waterhouse, B. D. (2003) The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews 42(1):3384. doi: 10.1016/s0165-0173(03)00143-7.CrossRefGoogle ScholarPubMed
Bouret, S. & Sara, S. J. (2005) Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences 28(11):574–82. Available at: http://dx.doi.org/10.1016/j.tins.2005.09.002.Google Scholar
Bradley, M. M., Costa, V. D. & Lang, P. J. (2015) Selective looking at natural scenes: Hedonic content and gender. International Journal of Psychophysiology 98(1):5458.Google Scholar
Bradley, M. M., Miccoli, L., Escrig, M. A. & Lang, P. J. (2008) The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45(4):602607. doi: 10.1111/j.1469-8986.2008.00654.x.Google Scholar
Braem, S., Coenen, E., Bombeke, K., van Bochove, M. E. & Notebaert, W. (2015) Open your eyes for prediction errors. Cognitive, Affective and Behavioral Neuroscience 15(2):374–80.CrossRefGoogle ScholarPubMed
Brown, R. A. M., Walling, S. G., Milway, J. S. & Harley, C. W. (2005) Locus ceruleus activation suppresses feedforward interneurons and reduces beta-gamma electroencephalogram frequencies while it enhances theta frequencies in rat dentate gyrus. Journal of Neuroscience 25(8):1985–91. doi: 10.1053/jneurosci.4307-04-2005.CrossRefGoogle ScholarPubMed
Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K. & de Lecea, L. (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neuroscience 13(12):1526–33. Available at: http://doi.org/10.1038/nn.2682.CrossRefGoogle ScholarPubMed
Cedarbaum, J. M. & Aghajanian, G. K. (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. Journal of Comparative Neurology 178(1):115.Google Scholar
Devilbiss, D. M. & Waterhouse, B. D. (2000) Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse 37(4):273–82.Google Scholar
Ding, F., O'Donnell, J., Thrane, A. S., Zeppenfeld, D., Kang, H., Xie, L., Wang, F. & Nedergaard, M. (2013) α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54(6):387–94.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Murty, V. P., Davachi, L. & Phelps, E. A. (2015) Emotional learning selectively and retroactively strengthens memories for related events. Nature 520(7547): 345–48.CrossRefGoogle ScholarPubMed
Dutton, D. G. & Aron, A. P. (1974) Some evidence for heightened sexual attraction under conditions of high anxiety. Journal of Personality and Social Psychology 30(4):510–17.CrossRefGoogle ScholarPubMed
Edmiston, E. K., McHugo, M., Dukic, M. S., Smith, S. D., Abou-Khalil, B., Eggers, E. & Zald, D. H. (2013) Enhanced visual cortical activation for emotional stimuli is preserved in patients with unilateral amygdala resection. The Journal of Neuroscience 33(27):11023–31.Google Scholar
Elam, M., Thorén, P. & Svensson, T. H. (1986) Locus coeruleus neurons and sympathetic nerves: Activation by visceral afferents. Brain Research 375(1):117–25.CrossRefGoogle ScholarPubMed
Elam, M., Yoa, T., Svensson, T. & Thoren, P. (1984) Regulation of locus coeruleus neurons and splanchnic, sympathetic nerves by cardiovascular afferents. Brain Research 290(2):281–87.CrossRefGoogle ScholarPubMed
Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. (2011) The human amygdala and the induction and experience of fear. Current Biology 21(1):3438.Google Scholar
Feinstein, J. S., Buzza, C., Hurlemann, R., Follmer, R. L., Dahdaleh, N. S., Coryell, W. H., Welsh, M. J., Tranel, D. & Wemmie, J. A. (2013) Fear and panic in humans with bilateral amygdala damage. Nature Neuroscience 16(3):270–72.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Barrett, A. B., Minati, L., Dolan, R. J., Seth, A. K. & Critchley, H. D. (2013). What the heart forgets: Cardiac timing influences memory for words and is modulated by metacognition and interoceptive sensitivity. Psychophysiology 50(6):505–12. doi: 10.1111/psyp.12039.Google Scholar
Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J. & Critchley, H. D. (2014) Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. The Journal of Neuroscience 34(19):6573–82.CrossRefGoogle ScholarPubMed
Gaucher, Q. & Edeline, J. M. (2015) Stimulus-specific effects of noradrenaline in auditory cortex: Implications for the discrimination of communication sounds. The Journal of Physiology 593(4):1003–20.Google Scholar
Gray, J. & Ball, G. (1970) Frequency-specific relation between hippocampal theta rhythm, behavior, and amobarbital action. Science 168(3936):1246–48.Google Scholar
Gray, J., McNaughton, N., James, D. & Kelly, P. (1975) Effect of minor tranquillisers on hippocampal θ rhythm mimicked by depletion of forebrain noradrenaline. Nature 258:424–25.Google Scholar
Grühn, D. & Scheibe, S. (2008) Age-related differences in valence and arousal ratings of pictures from the International Affective Picture System (IAPS): Do ratings become more extreme with age? Behavior Research Methods 40(2):512–21.Google Scholar
Hurlemann, R. (2008) Noradrenergic–glucocorticoid mechanisms in emotion-induced amnesia: From adaptation to disease. Psychopharmacology 197(1):1323. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18038126.Google Scholar
Ishigaki, H., Miyao, M. & Ishihara, S. Y. (1991) Change of pupil size as a function of exercise. Journal of Human Ergology 20(1):6166.Google ScholarPubMed
Joëls, M., Fernandez, G. & Roozendaal, B. (2011) Stress and emotional memory: A matter of timing. Trends in Cognitive Sciences 15(6):280–88.Google Scholar
Kensinger, E. A. (2008) Age differences in memory for arousing and nonarousing emotional words. Journal of Gerontology: Psychological Sciences 63:P13P18.Google Scholar
Klumpers, F., Morgan, B., Terburg, D., Stein, D. J. & van Honk, J. (2014) Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Social Cognitive and Affective Neuroscience 10(9):1161–68.Google Scholar
Knight, M. & Mather, M. (2009) Reconciling findings of emotion-induced memory enhancement and impairment of preceding items. Emotion 9(6):763–81. doi: 10.1037/a0017281.CrossRefGoogle ScholarPubMed
Knight, M., Seymour, T. L., Gaunt, J. T., Baker, C., Nesmith, K. & Mather, M. (2007) Aging and goal-directed emotional attention: Distraction reverses emotional biases. Emotion 7(4):705–14. doi: 10.1037/1528-3542.7.4.705.Google Scholar
Koss, M. C., Gherezghiher, T. & Nomura, A. (1984) CNS adrenergic inhibition of parasympathetic oculomotor tone. Journal of the Autonomic Nervous System 10(1):5568.Google Scholar
Krauseneck, T., Padberg, F., Roozendaal, B., Grathwohl, M., Weis, F., Hauer, D., Kaufmann, I., Schmoeckel, M. & Schelling, G. (2010) A β-adrenergic antagonist reduces traumatic memories and PTSD symptoms in female but not in male patients after cardiac surgery. Psychological Medicine 40(05):861–69.CrossRefGoogle Scholar
Krugers, H. J., Karst, H. & Joels, M. (2012) Interactions between noradrenaline and corticosteroids in the brain: From electrical activity to cognitive performance. Frontiers in Cellular Neuroscience 6:Article 15.Google Scholar
Kuhbandner, C. & Zehetleitner, M. (2011) Dissociable effects of valence and arousal in adaptive executive control. PLoS ONE 6(12):e29287.Google Scholar
Kukolja, J., Klingmuller, D., Maier, W., Fink, G. R. & Hurlemann, R. (2011) Noradrenergic–glucocorticoid modulation of emotional memory encoding in the human hippocampus. Psychological Medicine 41(10):2167–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21375794.Google Scholar
Kukolja, J., Schlapfer, T. E., Keysers, C., Klingmuller, D., Maier, W., Fink, G. R. & Hurlemann, R. (2008) Modeling a negative response bias in the human amygdala by noradrenergic–glucocorticoid interactions. Journal of Neuroscience 28(48):12868–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19036981.Google Scholar
Lalies, M., Middlemiss, D. N. & Ransom, R. (1988) Stereoselective antagonism of NMDA-stimulated noradrenaline release from rat hippocampal slices by MK-801. Neuroscience Letters 91(3):339–42.CrossRefGoogle ScholarPubMed
Leclerc, C. M. & Kensinger, E. A. (2008) Effects of age on detection of emotional information. Psychology and Aging 23(1):209–15.Google Scholar
Lee, T. H., Greening, S. G. & Mather, M. (2015) Encoding on goal-relevant stimuli is strengthened by emotional stimuli in memory. Frontiers in Psychology 6:1173.Google Scholar
Lee, T. H., Sakaki, M., Cheng, R., Velasco, R. & Mather, M. (2014b) Emotional arousal amplifies the effects of biased competition in the brain. Social Cognitive and Affective Neuroscience 9(12):2067–77. doi: 10.1093/scan/nsu015.Google Scholar
Lester, R. A., Clements, J. D., Westbrook, G. L. & Jahr, C. E. (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565–67.Google Scholar
Lindgren, M. E., Fagundes, C. P., Alfano, C. M., Povoski, S. P., Agnese, D. M., Arnold, M. W., Farrar, W. B., Yee, L. D., Carson, W. E. & Schmidt, C. R. (2013) Beta blockers may reduce intrusive thoughts in newly diagnosed cancer patients. Psychooncology 22(8):1889–94.CrossRefGoogle ScholarPubMed
Lovitz, E. S. & Thompson, L. T. (2015) Memory-enhancing intra-basolateral amygdala clenbuterol infusion reduces post-burst afterhyperpolarizations in hippocampal CA1 pyramidal neurons following inhibitory avoidance learning. Neurobiology of Learning and Memory 119(1):3441.Google Scholar
Maity, S., Jarome, T. J., Blair, J., Lubin, F. D. & Nguyen, P. V. (2015) Norepinephrine goes nuclear: Epigenetic modifications during long-lasting synaptic potentiation triggered by activation of beta-adrenergic receptors. The Journal of Physiology 594(4):863–81.Google Scholar
Marien, M. R., Colpaert, F. C. & Rosenquist, A. C. (2004) Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Research Reviews 45(1):3878.Google Scholar
Mather, M. & Knight, M. (2008) The emotional harbinger effect: Poor context memory for cues that previously predicted something arousing. Emotion 8(6):850–60.Google Scholar
Mather, M. & Knight, M. R. (2006) Angry faces get noticed quickly: Threat detection is not impaired among older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences 61:P54P57.Google Scholar
McIntyre, C. K., Miyashita, T., Setlow, B., Marjon, K. D., Steward, O., Guzowski, J. F. & McGaugh, J. L. (2005) Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America 102(30):10718–23.Google Scholar
McReynolds, J. R., Anderson, K. M., Donowho, K. M. & McIntyre, C. K. (2014) Noradrenergic actions in the basolateral complex of the amygdala modulate Arc expression in hippocampal synapses and consolidation of aversive and non-aversive memory. Neurobiology of Learning and Memory 115:4957. Available at: http://dx.doi.org/10.1016/j.nlm.2014.08.016.Google Scholar
Moghaddam, B., Bolinao, M. L., Stein-Behrens, B. & Sapolsky, R. (1994) Glucocortcoids mediate the stress-induced extracellular accumulation of glutamate. Brain Research 655(1):251–54.Google Scholar
Moncada, D., Ballarini, F., Martinez, M. C., Frey, J. U. & Viola, H. (2011) Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proceedings of the National Academy of Sciences of the United States of America 108(31):12931–36. doi: 10.1073/pnas.1104495108.Google Scholar
Montagrin, A., Brosch, T. & Sander, D. (2013) Goal conduciveness as a key determinant of memory facilitation. Emotion 13(4):622–28. doi: 10.1037/a0033066.Google Scholar
Morilak, D. A., Fornal, C. & Jacobs, B. L. (1986) Single unit activity of noradrenergic neurons in locus coeruleus and serotonergic neurons in the nucleus raphe dorsalis of freely moving cats in relation to the cardiac cycle. Brain Research 399(2):262–70.CrossRefGoogle Scholar
Morimoto, M., Morita, N., Ozawa, H., Yokoyama, K. & Kawata, M. (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: An immunohistochemical and in situ hybridization study. Neuroscience Research 26(3):235–69.Google Scholar
Muller, A., Joseph, V., Slesinger, P. A. & Kleinfeld, D. (2014) Cell-based reporters reveal in vivo dynamics of dopamine and norepinephrine release in murine cortex. Nature Methods 11(12):1245–52.Google Scholar
Nelson, M. F., Zaczek, R. & Coyle, J. T. (1980) Effects of sustained seizures produced by intrahippocampal injection of kainic acid on noradrenergic neurons: Evidence for local control of norepinephrine release. Journal of Pharmacology and Experimental Therapeutics 214(3):694702.Google Scholar
Nielsen, S. E., Barber, S. J., Chai, A., Clewett, D. V. & Mather, M. (2015) Sympathetic arousal increases a negative memory bias in young women with low sex hormone levels. Psychoneuroendocrinology 62:96106.Google Scholar
Nielsen, S. E., Chai, A. & Mather, M. (in preparation) Sympathetic arousal enhances memory for negative stimuli in older women not taking hormone replacement therapy.Google Scholar
Nielsen, S. E. & Mather, M. (2015) Comparison of two isometric handgrip protocols on sympathetic arousal in women. Physiology and Behavior 142:513.Google Scholar
Nieuwenhuis, S., Aston-Jones, G. & Cohen, J. D. (2005a) Decision making, the P3, and the locus coeruleus–norepinephrine system. Psychological Bulletin 131(4):510–32.Google Scholar
O'Dell, T. J., Connor, S. A., Gelinas, J. N. & Nguyen, P. V. (2010) Viagra for your synapses: Enhancement of hippocampal long-term potentiation by activation of beta-adrenergic receptors. Cellular Signalling 22(5):728–36. doi: 10.1016/j.cellsig.2009.12.004.Google Scholar
Okubo, Y., Sekiya, H., Namiki, S., Sakamoto, H., Iinuma, S., Yamasaki, M., Watanabe, M., Hirose, K. & Iino, M. (2010) Imaging extrasynaptic glutamate dynamics in the brain. Proceedings of the National Academy of Sciences of the United States of America 107(14):6526–31.Google Scholar
Pfaff, D. W. (2006) Brain arousal and information theory: Harvard University Press.Google Scholar
Phillips, W. A. (2015) Cognitive functions of intracellular mechanisms for contextual amplification. Brain and Cognition. Available at: http://dx.doi.org/10.1016/j.bandc.2015.09.005.Google ScholarPubMed
Piech, R. M., McHugo, M., Smith, S. D., Dukic, M. S., Van Der Meer, J., Abou-Khalil, B., Most, S. B. & Zald, D. H. (2011) Attentional capture by emotional stimuli is preserved in patients with amygdala lesions. Neuropsychologia 49(12):3314–19.Google Scholar
Piech, R. M., McHugo, M., Smith, S. D., Dukic, M. S., Van Der Meer, J., Abou-Khalil, B. & Zald, D. H. (2010) Fear-enhanced visual search persists after amygdala lesions. Neuropsychologia 48(12):3430–35.Google Scholar
Pittaluga, A. & Raiteri, M. (1990) Release-enhancing glycine-dependent presynaptic NMDA receptors exist on noradrenergic terminals of hippocampus. European Journal of Pharmacology 191(2):231–34.Google Scholar
Ponzio, A. & Mather, M. (2014) Hearing something emotional affects memory for what was just seen: How arousal amplifies trade-off effects in memory consolidation. Emotion 14:1137–42.Google Scholar
Pool, E., Brosch, T., Delplanque, S. & Sander, D. (2015) Attentional bias for positive emotional stimuli: A meta-analytic investigation. Psychological Bulletin 142(1):79106.Google Scholar
Popoli, M., Yan, Z., McEwen, B. S. & Sanacora, G. (2012) The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience 13(1):2237.Google Scholar
Preuschoff, K., Marius't Hart, B. & Einhäuser, W. (2011) Pupil dilation signals surprise: Evidence for noradrenaline's role in decision making. Frontiers in Neuroscience 5:Article 115. Available at: http://doi.org/10.3389/fnins.2011.00115 CrossRefGoogle ScholarPubMed
Ramos, B. P. & Arnsten, A. F. T. (2007) Adrenergic pharmacology and cognition: Focus on the prefrontal cortex. Pharmacology and Therapeutics 113(3):523–36.Google Scholar
Redondo, R. L. & Morris, R. G. (2011) Making memories last: The synaptic tagging and capture hypothesis. Nature Reviews Neuroscience 12(1):1730.Google Scholar
Rei, D., Mason, X., Seo, J., Gräff, J., Rudenko, A., Wang, J., Rueda, R., Siegert, S., Cho, S., Canter, R. G., Mungenast, A. E., Deisseroth, K. & Tsai, L. H. (2015) Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America 112(23):7291–96. doi: 10.1073/pnas.1415845112.CrossRefGoogle ScholarPubMed
Reznikov, L. R., Grillo, C. A., Piroli, G. G., Pasumarthi, R. K., Reagan, L. P. & Fadel, J. (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: Differential effects of antidepressant treatment. European Journal of Neuroscience 25(10):3109–14.Google Scholar
Sakaki, M., Fryer, K. & Mather, M. (2014a) Emotion strengthens high priority memory traces but weakens low priority memory traces. Psychological Science 25(2):387–95. doi: 10.1177/0956797613504784 Google Scholar
Sakaki, M., Ycaza-Herrera, A. E. & Mather, M. (2014b) Association learning for emotional harbinger cues: When do previous emotional associations impair and when do they facilitate subsequent learning of new associations? Emotion 14(1):115.Google Scholar
Sandi, C. (2011) Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends in Neurosciences 34(4):165–76.Google Scholar
Sara, S. J. (2015) Locus coeruleus in time with the making of memories. Current Opinion in Neurobiology 35:8794.Google Scholar
Sara, S. J. & Bouret, S. (2012) Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 76(1):130–41. doi: 10.1016/j.neuron.2012.09.011.Google Scholar
Sara, S. J. & Segal, M. (1991) Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: Implications for cognition. Progress in Brain Research 88:571–85.Google Scholar
Schwabe, L., Tegenthoff, M., Höffken, O. & Wolf, O. T. (2012) Simultaneous glucocorticoid and noradrenergic activity disrupts the neural basis of goal-directed action in the human brain. The Journal of Neuroscience 32(30):10146–55.Google Scholar
Shakhawat, A. M., Gheidi, A., MacIntyre, I. T., Walsh, M. L., Harley, C. W. & Yuan, Q. (2015) Arc-expressing neuronal ensembles supporting pattern separation require adrenergic activity in anterior piriform cortex: An exploration of neural constraints on learning. The Journal of Neuroscience 35(41):14070–75.Google Scholar
Stein, M. B., Kerridge, C., Dimsdale, J. E. & Hoyt, D. B. (2007) Pharmacotherapy to prevent PTSD: Results from a randomized controlled proof-of-concept trial in physically injured patients. Journal of Traumatic Stress 20(6):923–32.Google Scholar
Sutherland, M. R., Lee, T. H. & Mather, M. (under review) Arousal impairs top-down prioritization in selective attention.Google Scholar
Sutherland, M. R. & Mather, M. (2012) Negative arousal amplifies the effects of saliency in short-term memory. Emotion 12:1367–72. doi: 10.1037/a0027860.Google Scholar
Tranel, D. & Damasio, H. (1989) Intact electrodermal skin conductance responses after bilateral amygdala damage. Neuropsychologia 27(4):381–90. Available at: http://dx.doi.org/10.1016/0028-3932(89)90046-8.Google Scholar
Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M. & Adolphs, R. (2009) Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience 12(10):1224–25.CrossRefGoogle ScholarPubMed
Ullsperger, M., Harsay, H., Wessel, J. & Ridderinkhof, K. R. (2010) Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function 214(5/6):629–43. doi: 10.1007/s00429-010-0261-1.Google Scholar
Venkatesan, C., Song, X. Z., Go, C. G., Kurose, H. & Aoki, C. (1996) Cellular and subcellular distribution of α2A-adrenergic receptors in the visual cortex of neonatal and adult rats. Journal of Comparative Neurology 365(1):7995.Google Scholar
Vogel, B. O., Shen, C. & Neuhaus, A. H. (2015a) Emotional context facilitates cortical prediction error responses. Human Brain Mapping 36(9):3641–52. doi: 10.1002/hbm.22868.Google Scholar
Walling, S. G., Brown, R. A. M., Milway, J. S., Earle, A. G. & Harley, C. W. (2011) Selective tuning of hippocampal oscillations by phasic locus coeruleus activation in awake male rats. Hippocampus 21(11):1250–62. doi: 10.1002/hipo.20816.Google Scholar
Wilhelm, H. (2008) The pupil. Current Opinion in Neurology 21(1):3642.Google Scholar
Winkielman, P. & Cacioppo, J. T. (2001) Mind at ease puts a smile on the face: Psychophysiological evidence that processing facilitation elicits positive affect. Journal of Personality and Social Psychology 81(6):9891000.Google Scholar
Yoss, R. E., Moyer, N. J. & Hollenhorst, R. W. (1970) Pupil size and spontaneous pupillary waves associated with alertness, drowsiness, and sleep. Neurology 20(6):545–54.Google Scholar
Yu, A. J. & Dayan, P. (2005) Uncertainty, neuromodulation, and attention. Neuron 46(4):681–92. Available at: http://doi.org/10.1016/j.neuron.2005.04.026.Google Scholar