The breakdown electric field of 4H-SiC as a function of doping was measured using pn junction rectifiers, with maximum voltages of 1130 V being achieved. 4H-SiC vertical power MOSFET structures have shown specific on-resistances of 33 mΩ-cm2 for devices capable of blocking 150 V. A current density of 100 A/cm2 was achieved at a drain voltage of 3.3 V. Thyristors fabricated in SiC have also shown blocking voltages of 160 V and 100 A/cm2 at 3.0 V. High temperature operation was measured, with the power MOSFETs operating to 300°C, and the thyristors operating to 500°C.
Submicron 6H- and 4H-SiC MESFETs have shown good I-V characteristics to Vd= 40 V, with an Idss of 200–300 mA/mm. The maximum operating frequencies (fmax) achieved for 6H-SiC MESFETs is 13.8 GHz, with small-signal power gains of 9.8 dB and 2.9 dB at 5 GHz and 10 GHz, respectively. 4H-SiC MESFETs have demonstrated an RF output power density of 2.8 W/mm at 1.8 GHz. This is the highest power density ever reported for SiC and is 2–3 times higher than reported for comparable GaAs devices.