Using time resolved ultrafast spectroscopy, we have demonstrated that the far infrared (FIR) excitations in ferroelectric crystals may be modified through an arsenal of control techniques from the fields of guided waves, geometrical and Fourier optics, and optical pulse shaping. We show that LiNbO3 and LiTaO3 crystals of 10–250 μm thickness behave as slab waveguides for phonon-polaritons, which are admixtures of electromagnetic waves and lattice vibrations, when the polariton wavelength is on the order of or greater than the crystal thickness. Furthermore, we show that ferroelectric crystals are amenable to processing by ultrafast laser ablation, allowing for milling of user-defined patterns designed for guidance and control of phonon-polariton propagation. We have fabricated several functional structures including THz rectangular waveguides, resonators, splitters/couplers, interferometers, focusing reflectors, and diffractive elements. Electric field enhancement has been obtained with the reflective structures, through spatial shaping, of the optical excitation beam used for phonon-polariton generation, and through temporal pulse shaping to permit repetitive excitation of a phonon-polariton resonant cavity.