Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:11:36.411Z Has data issue: false hasContentIssue false

Room temperature 1.3–1.55 μm laser-like emission from Ge/Si self-assembled islands in Si-based photonic crystals

Published online by Cambridge University Press:  01 February 2011

J-M. Lourtioz
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
S. David
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
M. El Kurdi
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
C. Kammerer
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
X. Li
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
S. Sauvage
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
A. Chelnokov
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
V. Le Thanh
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
D. Bouchier
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
P. Boucaud
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
Get access

Abstract

Experimental results are reported on various guided optic configurations that combine silicon-based photonic crystals (PC) and Ge/Si quantum island emitters. The feasibility of low-refractive-index-contrast PC waveguides by inductively-coupled-plasma (ICP) etching of buried SiGe/Si waveguides is briefly recalled from a previous work. The main body of the paper is focused on experiments that were carried out on the high-refractive-index-contrast silicon-on-insulator (SOI) system. Self-assembled Ge/Si quantum island layers were deposited on a SOI substrate that was further processed to get two-dimensional PC microcavities and waveguides. The room temperature 1.3–1.55 μm emission from Ge/Si islands is shown to be significantly enhanced in PC microcavities, the strongest enhancement being obtained with the smallest (micropillar-like) cavities surrounded by wide pores. In this latter case, the room-temperature photoluminescence amplitude is more than two-orders of magnitude larger than that of Ge/Si islands grown in unprocessed samples. A superlinear (laser-like) dependence with the optical pumping is observed in the same time. This behavior and other experimental trends would incriminate both a high carrier concentration of the photo-created electron-hole plasma and a good vertical coupling efficiency of the micro-structured silicon. A first attempt to characterize linear PC waveguides is also reported using the wideband luminescence of Ge/Si islands embedded in the guides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chelnokov, A., David, S., Wang, K., Marty, F., and Lourtioz, J-M., IEEE Journ. Select. Topics in Quantum Electron. 8, 919 (2002).Google Scholar
2. Schilling, J., Müller, F., Matthias, S., Wehrsporn, R.B., Gösele, U., Busch, K., Appl. Phys. Lett. 78, 1180, (2001).Google Scholar
3. Notomi, M., Shinya, A., Yamada, K., Takahashi, J.-I., Takahashi, C., and Yokohama, I., IEEE J. Quantum Electron. 38, 736 (2002).Google Scholar
4. Arentoft, J., Sondergaard, T., Kristensen, M., Boltasseva, A., Thorhauge, M., and Frandsen, L., Electron. Letters 38, 274 (2002).Google Scholar
5. Castagna, M.E., Coffa, S., Caristia, L., Messina, A., ESSDERC Proc., 439 (2002).Google Scholar
6. Brunhes, T., Boucaud, P., Sauvage, S., Aniel, F., Lourtioz, J.-M., Hernandez, C., Campidelli, Y., Bensahel, D., Faini, G., Sagnes, I., Appl. Phys. Lett. 77, 1822 (2000).Google Scholar
7. benisty, H., Lalanne, P., Olivier, S., Rattier, M., Weisbuch, C., Smith, C.J.M., Krauss, T.F., Jouanin, C., and Cassagne, D., Optical and Quantum Electronics 34, 205 (2002)Google Scholar
8. Rowson, S., Chelnokov, A., and Lourtioz, J-M., J. Lightwave Technol. 99, 1989 (1999).Google Scholar
9. Le Thanh, V., Yam, V., Boucaud, P., Fortuna, F., Ulysse, C., Bouchier, D., Vervoort, L., and Lourtioz, J. M., Phys. Rev. B 60, 5851 (1999).Google Scholar
10. Benisty, H., Weisbuch, C., Labilloy, D., Rattier, M., Smith, C. J. M., Krauss, T. F., De la Rue, R. M., Houdre, R., Oesterle, U., Jouanin, C., and Cassagne, D., J. Lightwave Technol. 17, 2063 (1999).Google Scholar
11. David, S., El Kurdi, M., Boucaud, P., Chelnokov, A., Le Thanh, V., Bouchier, D., and Lourtioz, J-M., Appl. Phys. Lett. 83, 2509 (2003).Google Scholar
12. Boroditsky, M., Krauss, T.F., Coccioli, R., Vrijen, R., Bhat, R., and Yablonovitch, E., Appl. Phys. Lett. 75, 1036 (1999).Google Scholar
13. Delbeke, D., Bockstaele, R., Bienstman, P., Baets, R., and Benisty, H., IEEE J. Select. Topics Quantum Electron. 8, 189 (2002).Google Scholar
14. Smith, C.J.M., Krauss, T.F., Benisty, H., Rattier, M., Weisbuch, C., Oesterle, U., and Houdre, R., J. Opt. Soc. Am. B 17, 2043, (2000).Google Scholar
15. El Kurdi, M., PhD thesis, Orsay, France (2003).Google Scholar
16. Guidotti, D., Batchelder, J. S., Finkel, A., and Van Vecheten, J. A., Phys. Rev. B 38, 1569 (1988).Google Scholar
17. Liu, C. W., Lee, M. H., Chen, M.-J., Lin, I. C., and Lin, C.-F., Appl. Phys. Lett. 76, 1516 (2000).Google Scholar
18. Sveinbjörnsson, E. O., and Weber, J., Appl. Phys. Lett. 69, 2686 1996).Google Scholar
19. Tajima, M., and Ibuka, S., Journal of Applied Phys. 84, 2224 (1998).Google Scholar
20. Sernelius, B. E., Phys. Rev. B 39, 10825 (1989).Google Scholar
21. Baier, T., Mantz, U., Thonke, K., Sauer, R., Schäffler, F., and Herzog, H. J., Phys. Rev. B 50, 15191 (1994).Google Scholar
22. Hulin, D., Combescot, M., Bok, J., Migus, A., Vinet, J.Y., and Antonetti, A., Phys. Rev. Lett. 52, 1998 (1984).Google Scholar
23. Zelsmann, M., Picard, E., Charvolin, T., Hadji, E., Dal'zotto, B., Nier, M., Seassal, C., Rojo-Romeo, P., and Letartre, X., Appl. Phys. Lett. 81, 2340 (2002).Google Scholar
24. Labilloy, D., Benisty, H., Weisbuch, C., Smith, C.J.M, Krauss, T.F., Houdre, R., Oesterle, U., Phys. Rev. B 59, 1649 (1999).Google Scholar