No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Experimental results are reported on various guided optic configurations that combine silicon-based photonic crystals (PC) and Ge/Si quantum island emitters. The feasibility of low-refractive-index-contrast PC waveguides by inductively-coupled-plasma (ICP) etching of buried SiGe/Si waveguides is briefly recalled from a previous work. The main body of the paper is focused on experiments that were carried out on the high-refractive-index-contrast silicon-on-insulator (SOI) system. Self-assembled Ge/Si quantum island layers were deposited on a SOI substrate that was further processed to get two-dimensional PC microcavities and waveguides. The room temperature 1.3–1.55 μm emission from Ge/Si islands is shown to be significantly enhanced in PC microcavities, the strongest enhancement being obtained with the smallest (micropillar-like) cavities surrounded by wide pores. In this latter case, the room-temperature photoluminescence amplitude is more than two-orders of magnitude larger than that of Ge/Si islands grown in unprocessed samples. A superlinear (laser-like) dependence with the optical pumping is observed in the same time. This behavior and other experimental trends would incriminate both a high carrier concentration of the photo-created electron-hole plasma and a good vertical coupling efficiency of the micro-structured silicon. A first attempt to characterize linear PC waveguides is also reported using the wideband luminescence of Ge/Si islands embedded in the guides.