Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:22:55.087Z Has data issue: false hasContentIssue false

Dispersion Properties of Photonic Crystal Fibers - Issues and Opportunities

Published online by Cambridge University Press:  01 February 2011

J. Lægsgaard
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
S. E. Barkou Libori
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
K. Hougaard
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
J. Riishede
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
T. T. Larsen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
T. Sørensen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
T. P. Hansen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs. Lyngby: Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød
K. P. Hansen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs. Lyngby: Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød
M. D. Nielsen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs. Lyngby: Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød
J. B. Jensen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
A. Bjarklev
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
Get access

Abstract

The dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in silica/air microstructures, and partly due to the possibility of making complex refractive-index structures over the fiber cross section. We discuss the fundamental physical mechanisms determining the dispersion properties of PCFs guiding by either total internal reflection or photonic bandgap effects, and use these insights to outline design principles and generic behaviours of various types of PCFs. A number of examples from recent modeling and experimental work serve to illustrate our general conclusions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Knight, J. C. and St, P., Russell, J.. Applied optics: New ways to guide light. Science, 296:276277, 2002.Google Scholar
[2] Birks, T. A., Knight, J. C., Mangan, B. J., and St, P., Russell, J.. Photonic crystal fibres: An endless variety. IEICE Trans. Electron., E84–C:585591, 2001.Google Scholar
[3] Knight, J. C., Birks, T. A., Cregan, R. F., St, P., Russell, J., and De Sandro, J.-P.. Large mode area photonic crystal fibre. Electron. Lett., 34:13471348, 1998.Google Scholar
[4] Broderick, N. G. R., Monro, T. M., Bennett, P. J., and Richardson, D. J.. Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett., 24:1395–97, 1999.Google Scholar
[5] Ranka, J. K., Windeler, R. S., and Stentz, A. J.. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 25:2527, 2000.Google Scholar
[6] Knight, J. C., Arriaga, J., Birks, T. A., Ortigosa-Blanch, A., Wadsworth, W. J., and Russell, P. St. J.. Anomalous dispersion in photonic crystal fiber. IEEE Photonic Tech. L., 12:807809, 2000.Google Scholar
[7] Furusawa, K., Malinowski, A., Price, J. H. V., Monro, T. M., Sahu, J. K., Nilsson, J., and Richardson, D. J.. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding. Optics Express, 9:714–20, 2001.Google Scholar
[8] Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. St. J., Roberts, P. J., and Allan, D. C.. Single-mode photonic band gap guidance of light in air. Science, 285:15371539, 1999.Google Scholar
[9] Venkataraman, N., Gallagher, M. T., Smith, C. M., Müller, D., West, J. A., Koch, K. W., and Fajardo, J. C.. Low loss (13 db/km) air core photonic bandgap fiber, 28th European Conference on Optical Communication, ECOC '02, September 2002, Copenhagen, Denmark, post-deadline paper PD1.1.Google Scholar
[10] Oxenløwe, L. K., Siahlo, A. J., Berg, K. S., Tersigni, A., Clausen, A. T., Peucheret, C., Jeppesen, P., Hansen, K. P., and Jensen, J. R.. A photonic crystal fibre used as a 160 to 10 gb/s demultiplexer, OECC 2002 post deadline paper PD-1–4.Google Scholar
[11] Genty, G., Lehtonen, M., Ludvigsen, H., Broeng, J., and Kaivola, M.. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers. Optics Express, 10:1083–98, 2002.Google Scholar
[12] Birks, T. A., Mogilevtsev, D., Knight, J. C., and Russell, P. S. J.. Dispersion compensation using single-material fibers. IEEE Photon. Tech. Lett., 11:674676, 1999.Google Scholar
[13] Poli, F., Cucinotta, A., Fuochi, M., Selleri, S., and Vincetti, L.. Characterization of mi-crostructured optical fibers for wideband dispersion compensation. J. Opt. Soc. Am. A, 20:1958–62, 2003.Google Scholar
[14] Broeng, J., Barkou, S. E., Bjarklev, A., Knight, J. C., Birks, T. A., and Russell, P. S. J.. Highly increased photonic band gaps in silica/air structures. Opt. Commun., 156:240– 244, 1998.Google Scholar
[15] Knight, J. C., Broeng, J., Birks, T. A., and Russell, P. St. J.. Photonic band gap guidance in optical fibers. Science, 282:14761478, 1998.Google Scholar
[16] Bise, R. T., Windeler, R. S., Kranz, K. S., Kebage, C., Eggleton, B. J., and Trevor, D. J.. Tunable photonic band-gap fibre, OFC 2002, ThK3.Google Scholar
[17] Larsen, T. T., Bjarklev, A., Hermann, D. S., and Broeng, J.. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 11:2589–96, 2003.Google Scholar
[18] Snyder, A. W. and Love, J. D.. Optical Waveguide Theory. Chapman & Hall, London, 1996.Google Scholar
[19] Okamoto, K.. Fundamentals of optical waveguides. Academic Press, San Diego, 2000.Google Scholar
[20] Ferrando, A., Silvestre, E., Andrés, P., Miret, J. J., and Andrés, M. V.. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 9:687697, 2001.Google Scholar
[21] Lægsgaard, J., Bjarklev, A., and Barkou Libori, S. E.. Chromatic dispersion in photonic crystal fibers: Fast and accurate scheme for calculation. J. Opt. Soc. Am. B, 20:443–8, 2003.Google Scholar
[22] Lægsgaard, J., Mortensen, N. A., Riishede, J., and Bjarklev, A.. Material effects in airguiding photonic bandgap fibers, to appear in J. Opt. Soc. Am. B.Google Scholar
[23] Lægsgaard, J. and Bjarklev, A.. Doped photonic bandgap fibers for short-wavelength nonlinear devices. Opt. Lett., 28:783–5, 2003.Google Scholar
[24] Zsigri, B., Peucheret, C., Nielsen, M. D., and Jeppesen, P.. Transmission over 5.6km large effective area and low-loss (1.7 db/km photonic crystal fibre. Electronics Letters, 39:796–8, 2003.Google Scholar
[25] Ferrando, A., Silvestre, E., Miret, J. J.,, Monsoriu, J. A., Andrés, M. V., and Russell, P. St. J.. ‘designing a photonic crystal fibre with flattened chromatic dispersion’. Electronics Letters, 35:325327, 1999.Google Scholar
[26] Reeves, W. H., Knight, J. C., St, P., Russell, J., and Roberts, P. J.. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 10:609–13, 2002.Google Scholar
[27] Hansen, K. P.. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express, 11:1503–9, 2003.Google Scholar
[28] Grüner-Nielsen, L., Knudsen, S. N., Edvold, B., Veng, T., Magnussen, D., Larsen, C. C., and Damsgaard, H.. Dispersion compensating fibers. Opt. Fiber Tech., 6:164–80, 2000.Google Scholar