No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
In order to create micrometer-scale functional optical materials or devices, we have investigated on development of a novel electrophoretic deposition (EPD) method using a microelectrode as a counter electrode: This is so-called “μ-EPD method”. The μ-EPD method was applied to fabricate micro colloidal crystals consisting of monodisperse submicron polystyrene latex spheres for micro photonic application. Scanning electron micrographs of the deposit prepared under the optimized μ-EPD parameters showed a formation of microdot consisting of three-dimensionally ordered polystyrene spheres. As a result of the microscopic transmittance spectra, the microdots exhibited a narrow absorption peak and the optical stopband was observed at 460 nm for 204 nm polystyrene spheres, 675 nm for 290 nm polystyrene spheres, and 755 nm for 320 nm polystyrene spheres, respectively. The observed position is due to the Bragg diffraction of light from (111) plane of face-centered cubic opal lattice.