The paper present a multimode optical fiber based solar lighting and photovoltaic multifunctional device. TiO2, PbS and conducting polymer poly(3-hexylthiophene) (P3HT) were coated on the optical core surface as active photovoltaic layers, with ITO and LiF/Al electrodes. The guided sunlight in the multi-moded fiber was totally internal reflected depending on the incident angle and the evanescent light mode from scattered radiation of light was absorbed by the active layer to generate the electric current. The optical-electrical behaviors such as the short circuit current, filling factor, and open circuit voltage were studied. Furthermore, optical loss and the evanescent field at the interface between the optical fiber core and ITO electrode thin layer was discussed in relation to the coupling light from the guiding medium to the devices. Comparison studies of chemical and physical thin film coating on optical fibers are discussed. In particular, we obtained in situ growth of quantum dot, composite electrolyte and plasmonic enhancement on TiO2. We have demonstrated waveguide like fiber device with photo current measurements and I-V characterizations. Furthermore, we have optimized the device transmission of visible light through total internal reflection, and PV conversion of evanescent light absorbed by solar active composite materials fabricated around optical fibers.