Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T11:07:40.455Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Er-doped InGaN Alloys for High Temperature Applications

Published online by Cambridge University Press:  22 June 2011

K. Aryal
Affiliation:
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409
I. W. Feng
Affiliation:
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409
B. N. Pantha
Affiliation:
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409
J. Y. Lin
Affiliation:
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409
H. X. Jiang
Affiliation:
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409
Get access

Abstract

Thermoelectric (TE) properties of erbium-silicon co-doped InxGa1-xN alloys (InxGa1-xN: Er + Si, 0≤x≤0.14), grown by metal organic chemical vapor deposition, have been investigated. It was found that doping of InGaN alloys with Er atoms of concentration, N[Er] larger than 5x1019 cm-3, has substantially reduced the thermal conductivity, κ, in low In content InGaN alloys. It was observed that κ decreases as N[Er] increases in Si co-doped In0.10Ga0.90N alloys. A room temperature ZT value of ~0.05 was obtained in In0.14Ga0.86N: Er + Si, which is much higher than that obtained in un-doped InGaN with similar In content. Since low In content InGaN is stable at high temperatures, these Er+Si co-doped InGaN alloys could be promising TE materials for high temperature applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tritt, T. M., Science 283, 804 (1999).Google Scholar
2. Boukai, A., Xu, K., and Heath, J. R., Adv. Mater. 18, 864 (2006).Google Scholar
3. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dressehaus, M., Chen, G., and Ren, Z., Science 320, 634 (2008).Google Scholar
4. Ohtaki, M., Araki, K., and Yamamoto, K., J. Electron. Mater. 38, 1234 (2009).Google Scholar
5. Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., Kim, P., and Majumdar, A., J. Heat Transfer 125, 881 (2003).Google Scholar
6. He, Q., Hao, Q., Chen, G., Poudel, B., Wang, X., Wang, D., and Ren, Z., Appl. Phys. Lett. 91, 052505 (2007).Google Scholar
7. Charoenphakdee, A., Kurosaki, K., Harnwunggmoung, A., Muta, H., and Yamanaka, S., J. Alloys Compound 496, 53 (2010).Google Scholar
8. Rowe, D. M. and Shukla, V. S., J. Appl. Phys. 52, 7421 (1981).Google Scholar
9. Wang, X. W., Lee, H., Lan, Y.C., Zhu, G.H., Joshi, G., Wang, D. Z., Yang, J., Muto, A. J., Tang, M. Y., Klatsky, J., Song, S., Dresselhaus, M. S., Chen, G., and Ren, Z. F., Appl. Phys. Lett. 93, 193121 (2008).Google Scholar
10. Kokanbaev, I. M., J.Eng. Physics and Thermophysics 76, 432 (2003).Google Scholar
11. Roh, J. W., Jang, S. Y., Kang, J., Lee, S., Noh, J., Kim, W., Park, J., and Lee, W., Appl. Phys. Lett. 96, 103101 (2010).Google Scholar
12. Harnwunggmoung, A., Kurosaki, K., Muta, H., and Yamanaka, S., Appl. Phys. Lett. 96, 202107 (2010).Google Scholar
13. Ohtaki, M., Tsubota, T., Eguchi, K., and Arai, H., J. Appl. Phys. 79, 1816 (1996). 6Google Scholar
14. Satterthwaite, C. B. and Ure, R. W., Phy. Rev. 108, 1164 (1957).Google Scholar
15. Venkataubramanian, R., Siivoa, E., Colpitts, T., and O’Quinn, B., Nature 413, 597 (2001).Google Scholar
16. Goncalves, L. M., Couto, C., Alpuim, P., Rolo, A. G., Volklein, F., and Correia, J. H., Thin Solid Flims 518, 2816 (2010).Google Scholar
17. Yamguchi, S., Izaki, R., Yamagiwa, K., Taki, K., Iwamura, Y., and Yamamoto, A., Appl. Phys. Lett. 83, 5398 (2003).Google Scholar
18. Yamagchi, S., Iwamura, Y., and Yamamoto, A., Appl. Phys. Lett. 82, 2065 (2003).Google Scholar
19. Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., and Chen, G., Energy Environ. Sci. 2, 466 (2009).Google Scholar
20. Bahk, J., Bian, Z., Zebarjadi, M., Zide, J. M. O., Lu, H., Xu, D., Feser, J., Zeng, G., Majumdar, A., Gossard, A. C., Shakouri, A., and Bowers, J. E., Phys. Rev. B 81, 235209 (2010).Google Scholar
21. Sztein, A., Ohta, H., Sonoda, J., Ramu, A., Bowers, J., DenBaars, S., and Nakamura, S., Appl. Phys. Express 2, 111003 (2009).Google Scholar
22. Pantha, B. N., Dahal, R., Li, J., Lin, J. Y., Jiang, H. X., and Pomrenke, G., Appl. Phys. Lett. 92, 042112 (2008).Google Scholar
23. Pantha, B. N., Dahal, R., Li, J., Lin, J. Y., Jiang, H. X., and Pomrenke, G., J. Electron. Mater. 38, 1132 (2009).Google Scholar
24. Mahan, G. D., “Rare Earth Thermoelectrics,” Proceedings of the 16th International Conference on Thermoelectrics, Dresden, Germany, 1997, pp. 2124.Google Scholar
25. Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A., Phys. Rev. Lett. 96, 045901 (2006).Google Scholar
26. Cahill, D. G., Rev. Sci. Instrum. 61, 802 (1990).Google Scholar
27. Cahill, D. G., Katiyar, M., and Ablson, J. R., Phys. Rev. B 50, 6077 (1994).Google Scholar