Given a finite-dimensional Banach space $X$ and an Auerbach basis $\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of $X$, it is proved that there exist $n+1$ linear combinations $z_{1},\ldots ,z_{n+1}$ of $x_{1},\ldots ,x_{n}$ with coordinates $0,\pm 1$, such that $\Vert z_{k}\Vert =1$, for $k=1$, $2,\ldots ,n+1$ and $\Vert z_{k}-z_{l}\Vert >1$, for $1\leqslant k<l\leqslant n+1$.