Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T05:16:30.479Z Has data issue: false hasContentIssue false

ESTIMATES FOR SOLUTIONS TO DISCRETE CONVOLUTION EQUATIONS

Published online by Cambridge University Press:  15 April 2015

Christer O. Kiselman*
Affiliation:
Department of Information Technology, Division of Visual Information and Interaction, Computerized Image Analysis and Human–Computer Interaction, Uppsala University, PO Box 337, SE-751 05 Uppsala, Sweden email [email protected], [email protected]
Get access

Abstract

We study solvability of convolution equations for functions with discrete support in $\mathbf{R}^{n}$, a special case being functions with support in the integer points. The more general case is of interest for several grids in Euclidean space, like the body-centred and face-centred tessellations of 3-space, as well as for the non-periodic grids that appear in the study of quasicrystals. The theorem of existence of fundamental solutions by de Boor et al is generalized to general discrete supports, using only elementary methods. We also study the asymptotic growth of sequences and arrays using the Fenchel transformation.

Type
Research Article
Copyright
Copyright © University College London 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Boor, C., Höllig, K. and Riemenschneider, S., Fundamental solutions for multivariate difference equations. Amer. J. Math. 111(3) 1989, 403415.CrossRefGoogle Scholar
Bourbaki, N., Théorie des ensembles (Éléments de mathématique, Première partie), Hermann (Paris, 1954), Chs. I and II.Google Scholar
Bourbaki, N., Topologie générale (Éléments de mathématique, Première partie), 3rd edn., Hermann (Paris, 1961), Chs. 1 and 2.Google Scholar
Domar, Y., Convolution theorems of Titchmarsh type on discrete Rn. Proc. Edinb. Math. Soc. (2) 32(3) 1989, 449457.CrossRefGoogle Scholar
Hörmander, L., On the division of distributions by polynomials. Ark. Mat. 3 1958, 555568.CrossRefGoogle Scholar
Łojasiewicz, S., Division d’une distribution par une fonction analytique de variables réelles. C. R. Acad. Sci. Paris 246 1958, 683686.Google Scholar
Łojasiewicz, S., Sur le problème de la division. Studia Math. 18 1959, 87136.CrossRefGoogle Scholar
Strand, R., Distance Functions and Image Processing on Point-Lattices. With Focus on the 3D Face- and Body-centered Cubic Grids (Uppsala Dissertations from the Faculty of Science and Technology 79), Acta Universitatis Upsaliensis (Uppsala, 2008).Google Scholar
Weiss, B., Titchmarsh’s convolution theorem on groups. Proc. Amer. Math. Soc. 19 1968, 7579.Google Scholar