Published online by Cambridge University Press: 28 May 2014
In this paper we present a new family of identities for multiple harmonic sums which generalize a recent result of Hessami Pilehrood et al [Trans. Amer. Math. Soc. (to appear)]. We then apply it to obtain a family of identities relating multiple zeta star values to alternating Euler sums. In such a typical identity the entries of the multiple zeta star values consist of blocks of arbitrarily long 2-strings separated by positive integers greater than two while the largest depth of the alternating Euler sums depends only on the number of 2-string blocks but not on their lengths.