For a locally compact group $G$ and $1\,<\,p\,<\,\infty $, let ${{A}_{p}}\left( G \right)$ be the Herz-Figà-Talamanca algebra and let $P{{M}_{p}}\left( G \right)$ be its dual Banach space. For a Banach ${{A}_{p}}\left( G \right)$-module $X$ of $P{{M}_{p}}\left( G \right)$, we prove that the multiplier space $\text{M}\left( {{A}_{p}}\left( G \right),{{X}^{*}} \right)$ is the dual Banach space of ${{Q}_{X}}$, where ${{Q}_{X}}$ is the norm closure of the linear span ${{A}_{p}}\left( G \right)X\,\text{of}\,u\,f\,\text{for}\,u\,\in \,{{A}_{p}}\left( G \right)\,\text{and}\,f\,\in \,X$ in the dual of $\text{M}\left( {{A}_{p}}\left( G \right),{{X}^{*}} \right)$. If $p\,=\,2$ and $P{{F}_{p}}\left( G \right)\subseteq X$, then ${{A}_{p}}\left( G \right)X$ is closed in $X$ if and only if $G$ is amenable. In particular, we prove that the multiplier algebra $M{{A}_{p}}\left( G \right)\,\text{of}\,{{A}_{p}}\left( G \right)$ is the dual of $Q$, where $Q$ is the completion of ${{L}^{1}}\left( G \right)$ in the $||\cdot |{{|}_{M}}$-norm. $Q$ is characterized by the following: $f\,\in \,Q$ if an only if there are ${{u}_{i}}\,\in \,{{A}_{p}}\left( G \right)$ and ${{f}_{i}}\in P{{F}_{p}}\left( G \right)\left( i=1,2,... \right)$ with
$\sum\nolimits_{i=1}^{\infty }{||}\,{{u}_{i}}\,|{{|}_{{{A}_{p}}\left( G \right)}}||fi|{{|}_{P{{F}_{p}}\left( G \right)}}\,<\,\infty $
such that
$f=\sum{_{i=1}^{\infty }\,{{u}_{i}}{{f}_{i}}}$ on $M{{A}_{p}}\left( G \right)$. It is also proved that if ${{A}_{p}}\left( G \right)$ is dense in $M{{A}_{p}}\left( G \right)$ in the associated ${{w}^{*}}$-topology, then the multiplier norm and $||\cdot |{{|}_{{{A}_{p}}\left( G \right)}}$-norm are equivalent on ${{A}_{p}}\left( G \right))$ if and only if $G$ is amenable.