Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T12:55:39.212Z Has data issue: false hasContentIssue false

Éléments unipotents réguliers des sous-groupes de Levi

Published online by Cambridge University Press:  20 November 2018

Cédric Bonnafé*
Affiliation:
Département de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25000 Besançon, France email: [email protected]
Rights & Permissions [Opens in a new window]

Résumé

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nous étudions la structure du centralisateur d'un élément unipotent régulier d'un sous-groupe de Levi d'un groupe réductif, ainsi que la structure du groupe des composantes de ce centralisateur en relation avec la notion de système local cuspidal définie par Lusztig. Nous déterminons son radical unipotent, montrons l'existence d'un complément de Levi et étudions la structure de son groupe de Weyl. Comme application, nous démontrons des résultats qui étaient annoncés dans un précédent article de l'auteur sur les éléments unipotents réguliers.

Abstract

Abstract

We investigate the structure of the centralizer of a regular unipotent element of a Levi subgroup of a reductive group. We also investigate the structure of the group of components of this centralizer in relation with the notion of cuspidal local system defined by Lusztig. We determine its unipotent radical, we prove that it admits a Levi complement, and we get some properties on its Weyl group. As an application, we prove some results which were announced in previous paper on regular unipotent elements.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2004

References

Références

[BC] Bala, P. and Carter, R. W., Classes of unipotent elements in simple algebraic groups I. Math. Proc. Cambridge Philos. Soc. 79(1976), 401425; Classes of unipotent elements in simple algebraic groups II. Math. Proc. Cambridge Philos. Soc. 80(1976), 1–17.Google Scholar
[Bon1] Bonnafé, C., Regular unipotent elements. C. R. Acad. Sci. Paris Sér. I Math. 328(1999), 275280.Google Scholar
[Bon2] Bonnafé, C., Opérateurs de torsion dans SL n (Fq) et SU n (Fq) . Bull. Soc. Math. France 128(2000), 309345.Google Scholar
[Bon3] Bonnafé, C., Mackey formula in type A. Bull. LondonMath. Soc. 128(2000), 309345.Google Scholar
[Bon4] Bonnafé, C., Actions of relative Weyl groups I. Á; paraître au J. Group Theory.Google Scholar
[Bon5] Bonnafé, C., Actions of relativeWeyl groups II. Á paraître au J. Group Theory.Google Scholar
[Bon6] Bonnafé, C., A note on centralizers of unipotent elements. Á paraître à l'Ital. J. of Pure and App. Math.Google Scholar
[Bor] Borel, A., Linear algebraic groups. Graduate Texts in Math. 126, Springer, 1991.Google Scholar
[Bou] Bourbaki, N., Groupes et algèbres de Lie, Chapitres IV, V et VI. Hermann, Paris, 1968.Google Scholar
[DLM1] Digne, F., Lehrer, G. and Michel, J., The characters of the group of rational points of a reductive group with non-connected centre. J. Reine Angew. Math. 425(1992), 155192.Google Scholar
[DLM2] Digne, F., Lehrer, G. and Michel, J., On Gel'fand-Graev characters of reductive groups with non-connected centre. J. Reine. Angew.Math. 491(1997), 131147.Google Scholar
[H] Howlett, R. B., Normalizers of parabolic subgroups of reflection groups. J. London Math. Soc. (2) 21(1980), 6280.Google Scholar
[Lu] Lusztig, G., Intersection cohomology complexes on a reductive group. Invent. Math. 75(1984), 205272.Google Scholar
[Po1] Pommerening, K., Über die unipotenten Klassen reduktiver Gruppen. J. Algebra 49(1977), 525536.Google Scholar
[Po2] Pommerening, K., Über die unipotenten Klassen reduktiver Gruppen II. J. Algebra 65(1980), 373398.Google Scholar
[Pr] Premet, A., Nilpotent orbits in good characteristic and the Kempf-Rousseau theory. J. Algebra 260(2003), 338366.Google Scholar
[R] Richardson, R. W., On orbits of algebraic groups and Lie groups. Bull. Austral.Math. Soc. 25(1982), 129.Google Scholar
[SpSt] Springer, T. A. and Steinberg, R., Conjugacy classes. Seminar in algebraic groups and related finite groups, Lect. Notes in Math. 131(1970), 167266.Google Scholar