Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T10:18:11.709Z Has data issue: false hasContentIssue false

A neuroscientific perspective on the computational theory of social groups

Published online by Cambridge University Press:  07 July 2022

Marco K. Wittmann
Affiliation:
Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford OX1 3SR, [email protected]://sites.google.com/view/marcokwittmann Department of Experimental Psychology, University College London, LondonWC1H 0AP, UK Max Planck University College London Centre for Computational Psychiatry and Ageing Research, LondonWC1B 5EH, UK
Nadira S. Faber
Affiliation:
Department of Psychology, University of Exeter, Exeter EX4 4QG, UK [email protected]://nadirafaber.com/ Uehiro Centre for Practical Ethics, University of Oxford, Oxford OX1 IPT, UK
Claus Lamm
Affiliation:
Faculty of Psychology, University of Vienna, Vienna 1010, Austria [email protected]://scan.psy.univie.ac.at Vienna Cognitive Science Hub, University of Vienna, Vienna 1010, Austria

Abstract

We welcome a computational theory on social groups, yet we argue it would benefit from a broader scope. A neuroscientific perspective offers the possibility to disentangle which computations employed in a group context are genuinely social in nature. Concurrently, we emphasize that a unifying theory of social groups needs to additionally consider higher-level processes like motivations and emotions.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ariely, D., Bracha, A., & Meier, S. (2009). Doing good or doing well? Image motivation and monetary incentives in behaving prosocially. American Economic Review, 99(1), 544555, https://doi.org/10.1257/aer.99.1.544.CrossRefGoogle Scholar
Basten, U., Biele, G., Heekeren, H. R., & Fiebach, C. J. (2010). How the brain integrates costs and benefits during decision making. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 2176721772, https://doi.org/10.1073/pnas.0908104107.CrossRefGoogle ScholarPubMed
Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. (2018). What is a cognitive map? Organizing knowledge for flexible behavior. Neuron, 100(2), 490509, https://doi.org/10.1016/j.neuron.2018.10.002.CrossRefGoogle ScholarPubMed
Bloom, P. (2017). Empathy and Its discontents. Trends in Cognitive Sciences, 21(1), 2431.CrossRefGoogle ScholarPubMed
De Dreu, C. K. W., Nijstad, B. A., & van Knippenberg, D. (2008). Motivated information processing in group judgment and decision making. Personality and Social Psychology Review, 12(1), 2249, https://doi.org/10.1177/1088868307304092.CrossRefGoogle ScholarPubMed
Faber, N. S., Häusser, J. A., & Kerr, N. L. (2017). Sleep deprivation impairs and caffeine enhances my performance, but not always our performance: How acting in a group can change the effects of impairments and enhancements. Personality and Social Psychology Review, 21(1), 328, https://doi.org/10.1177/1088868315609487.CrossRefGoogle Scholar
Faber, N. S., Savulescu, J., & Van Lange, P. A. (2016). Reputational concerns as a general determinant of group functioning. Behavioral and Brain Sciences, 39, e148. https://doi.org/10.1017/S0140525X15001363.CrossRefGoogle ScholarPubMed
Faulmüller, N., Mojzisch, A., Kerschreiter, R., & Schulz-Hardt, S. (2012). Do you want to convince me or to be understood? Preference-consistent information sharing and its motivational determinants. Personality and Social Psychology Bulletin, 38(12), 16841696, https://doi.org/10.1177/0146167212458707.CrossRefGoogle ScholarPubMed
Izuma, K., & Adolphs, R. (2013). Social manipulation of preference in the human brain. Neuron, 78(3), 563573, https://doi.org/10.1016/j.neuron.2013.03.023.CrossRefGoogle ScholarPubMed
Klein-Flügge, M. C., Kennerley, S. W., Friston, K., & Bestmann, S. (2016). Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort-reward trade-off. Journal of Neuroscience, 36(39), 1000210015, https://doi.org/10.1523/JNEUROSCI.0292-16.2016.CrossRefGoogle ScholarPubMed
Lamm, C., Bukowski, H., & Silani, G. (2016). From shared to distinct self–other representations in empathy: Evidence from neurotypical function and socio-cognitive disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 20150083, https://doi.org/10.1098/rstb.2015.0083.CrossRefGoogle ScholarPubMed
Lamm, C., Rütgen, M., & Wagner, I. C. (2019). Imaging empathy and prosocial emotions. Neuroscience Letters, 693, 4953, https://doi.org/10.1016/j.neulet.2017.06.054.CrossRefGoogle ScholarPubMed
Lockwood, P. L., Wittmann, M. K., Apps, M. A. J., Klein-Flügge, M. C., Crockett, M. J., Humphreys, G. W., & Rushworth, M. F. S. (2018). Neural mechanisms for learning self and other ownership. Nature Communications, 9(1), 4747, https://doi.org/10.1038/s41467-018-07231-9.CrossRefGoogle ScholarPubMed
Munuera, J., Rigotti, M., & Salzman, C. D. (2018). Shared neural coding for social hierarchy and reward value in primate amygdala. Nature Neuroscience, 21, 415–423. https://doi.org/10.1038/s41593-018-0082-8.CrossRefGoogle ScholarPubMed
Murray, E. A., & Rudebeck, P. H. (2018). Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nature Reviews Neuroscience, 19(7), 404417, https://doi.org/10.1038/s41583-018-0013-4.CrossRefGoogle ScholarPubMed
Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437(7063), 12911298, https://doi.org/10.1038/nature04131.CrossRefGoogle ScholarPubMed
Rütgen, M., Seidel, E.-M., Silani, G., Riečanský, I., Hummer, A., Windischberger, C., … Lamm, C. (2015). Placebo analgesia and its opioidergic regulation suggest that empathy for pain is grounded in self pain. Proceedings of the National Academy of Sciences, 112(41), E5638E5646, https://doi.org/10.1073/pnas.1511269112.CrossRefGoogle ScholarPubMed
Saxe, R. (2006). Uniquely human social cognition. Current Opinion in Neurobiology, 16(2), 235239, https://doi.org/10.1016/j.conb.2006.03.001.CrossRefGoogle ScholarPubMed
Sliwa, J., & Freiwald, W. A. (2017). A dedicated network for social interaction processing in the primate brain. Science (New York, N.Y.), 356(6339), 745749, https://doi.org/10.1126/science.aam6383.CrossRefGoogle ScholarPubMed
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.Google Scholar
Wittmann, M. K., Kolling, N., Faber, N. S., Scholl, J., Nelissen, N., & Rushworth, M. F. (2016). Self-other mergence in the frontal cortex during cooperation and competition. Neuron, 91(2), 482493, https://doi.org/10.1016/j.neuron.2016.06.022.CrossRefGoogle ScholarPubMed
Wittmann, M. K., Lockwood, P. L., & Rushworth, M. F. S. (2018). Neural mechanisms of social cognition in primates. Annual Review of Neuroscience, 41, 99118, https://doi.org/10.1146/annurev-neuro-080317-061450.CrossRefGoogle ScholarPubMed
Wittmann, M. K., Trudel, N., Trier, H. A., Klein-Flügge, M. C., Sel, A., Verhagen, L., & Rushworth, M. F. S. (2021). Causal manipulation of self-other mergence in the dorsomedial prefrontal cortex. Neuron, 109(14), P2353–2361. https://doi.org/10.1016/j.neuron.2021.05.027.CrossRefGoogle ScholarPubMed