A flow model for cold firn proves to be very successful in calculating the age-depth relation of several deep ice cores drilled on Colle Gnifetti, Monte Rosa, Swiss Alps. The compressibility of firn is taken into account by an appropriate constitutive equation, first employed in glaciology by Gagliardini and Meyssonnier (1997), which is implemented in a finite-element code. Flow models of the Colle Gnifetti saddle glaciation in two and three dimensions are based on digital elevation maps of the surface σnd the bedrock, based on radio-echo soundings of the ice thickness. Firn density and the englacial temperature fields are either prescribed or calculated in coupled models. Measured surface velocities, density profiles, the ages of chemically dated layers in ice cores and the closure of a 100 m deep borehole provide benchmarks for the models. The good agreement of modeled and measured quantities confirms that the model includes the relevant physical processes and particularly that the firn flow law is well suited for this type of glacier. The study provides new constraints on the age of the ice near the base as well as the source regions of the ice in the cores.
An exceptional flow behavior of the basal ice layer was detected in measurements of borehole closure and inclination. Measurtxl6ed deformation rates exceed upper bounds derived from the flow models, and are thus attributed to altered rheological properties.