We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
where ${\mathcal{L}}_{k}$ is a general nonlocal integrodifferential operator of fractional type, $\unicode[STIX]{x1D707}$ is a real parameter and $\unicode[STIX]{x1D6FA}$ is an open bounded subset of $\mathbb{R}^{n}$ ($n>2s$, where $s\in (0,1)$ is fixed) with Lipschitz boundary $\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$. Here $f,g_{1},g_{2}:\unicode[STIX]{x1D6FA}\rightarrow \mathbb{R}$ and $h:\mathbb{R}\rightarrow \mathbb{R}$ are functions satisfying suitable hypotheses.
We present a simple, accurate method for computing singular or nearly singular integrals on a smooth, closed surface, such as layer potentials for harmonic functions evaluated at points on or near the surface. The integral is computed with a regularized kernel and corrections are added for regularization and discretization, which are found from analysis near the singular point. The surface integrals are computed from a new quadrature rule using surface points which project onto grid points in coordinate planes. The method does not require coordinate charts on the surface or special treatment of the singularity other than the corrections. The accuracy is about O(h3), where h is the spacing in the background grid, uniformly with respect to the point of evaluation, on or near the surface. Improved accuracy is obtained for points on the surface. The treecode of Duan and Krasny for Ewald summation is used to perform sums. Numerical examples are presented with a variety of surfaces.
We would like to present a method to compute the incompatibility operator in any system of curvilinear coordinates (components). The procedure is independent of the metric in the sense that the expression can be obtained by means of the basis vectors only, which are first defined as normal or tangential to the domain boundary, and then extended to the whole domain. It is an intrinsic method, to some extent, since the chosen curvilinear system depends solely on the geometry of the domain boundary. As an application, the in-extenso expression of incompatibility in a spherical system is given.
We study the following coupled nonlinear Schr¨odinger system in ℝ3:
where μ1 > 0, μ2 > 0 and β ∈ ℝ is a coupling constant. Irrespective of whether the system is repulsive or attractive, we prove that it has nodal semi-classical segregated or synchronized bound states with clustered spikes for sufficiently small ε under some additional conditions on P(x), Q(x) and β. Moreover, the number of this type of solutions will go to infinity as ε → 0+.
This paper is devoted to a unified a priori and a posteriori error analysis of CIP-FEM (continuous interior penalty finite element method) for second-order elliptic problems. Compared with the classic a priori error analysis in literature, our technique can easily apply for any type regularity assumption on the exact solution, especially for the case of lower H1+s weak regularity under consideration, where 0 ≤ s ≤ 1/2. Because of the penalty term used in the CIP-FEM, Galerkin orthogonality is lost and Céa Lemma for conforming finite element methods can not be applied immediately when 0≤s≤1/2. To overcome this difficulty, our main idea is introducing an auxiliary C1 finite element space in the analysis of the penalty term. The same tool is also utilized in the explicit a posteriori error analysis of CIP-FEM.
where λ is a positive parameter and f has exponential critical growth. We first establish the existence of a non-zero weak solution. Then, by assuming that f is odd, we prove that the number of solutions increases when the parameter λ becomes large. In the proofs we apply variational methods in a suitable weighted Sobolev space consisting of functions with rapid decay at infinity.
We prove the existence of positive solutions to a semipositone p-Laplacian problem combining mountain pass arguments, comparison principles, regularity principles and a priori estimates.
It is known that large time-stepping method are useful for simulating phase field models. In this work, an adaptive time-stepping strategy is proposed based on numerical energy stability and equi-distribution principle. The main idea is to use the energy variation as an indicator to update the time step, so that the resulting algorithm is free of user-defined parameters, which is different from several existing approaches. Some numerical experiments are presented to illustrate the effectiveness of the algorithms.
Let $H=-\unicode[STIX]{x1D6E5}+V$ be a Schrödinger operator with some general signed potential $V$. This paper is mainly devoted to establishing the $L^{q}$-boundedness of the Riesz transform $\unicode[STIX]{x1D6FB}H^{-1/2}$ for $q>2$. We mainly prove that under certain conditions on $V$, the Riesz transform $\unicode[STIX]{x1D6FB}H^{-1/2}$ is bounded on $L^{q}$ for all $q\in [2,p_{0})$ with a given $2<p_{0}<n$. As an application, the main result can be applied to the operator $H=-\unicode[STIX]{x1D6E5}+V_{+}-V_{-}$, where $V_{+}$ belongs to the reverse Hölder class $B_{\unicode[STIX]{x1D703}}$ and $V_{-}\in L^{n/2,\infty }$ with a small norm. In particular, if $V_{-}=-\unicode[STIX]{x1D6FE}|x|^{-2}$ for some positive number $\unicode[STIX]{x1D6FE}$, $\unicode[STIX]{x1D6FB}H^{-1/2}$ is bounded on $L^{q}$ for all $q\in [2,n/2)$ and $n>4$.
Using a regular Borel measure μ ⩾ 0 we derive a proper subspace of the commonly used Sobolev space D1(ℝN) when N ⩾ 3. The space resembles the standard Sobolev space H1(Ω) when Ω is a bounded region with a compact Lipschitz boundary ∂Ω. An equivalence characterization and an example are provided that guarantee that is compactly embedded into L1(RN). In addition, as an application we prove an existence result of positive solutions to an elliptic equation in ℝN that involves the Laplace operator with the critical Sobolev nonlinearity, or with a general nonlinear term that has a subcritical and superlinear growth. We also briefly discuss the compact embedding of to Lp(ℝN) when N ⩾ 2 and 2 ⩽ p ⩽ N.
We investigate the central moments of (regular) hexagons and derive accordingly a discrete approximation to definite integrals on hexagons. The seven-point cubature rule makes use of interior and neighbor center nodes, and is of fourth order by construction. The result is expected to be useful in two-dimensional (open-field) applications of integral equations or image processing.
The equation –ε2Δu + F(V(x), u) = 0 is studied over all of ℝn, and solutions are constructed that concentrate at an infinite set as ε → 0. The function V (x) is vector valued. This advances previous studies in which V (x) was scalar valued.
In this paper, we characterise the structure of the eigencone for the Finsler Laplacian corresponding to the first Dirichlet eigenvalue on a compact Finsler manifold with a smooth boundary.
We study the indefinite Kirchhoff-type problem
where Ω is a smooth bounded domain in and . We require that f is sublinear at the origin and superlinear at infinity. Using the mountain pass theorem and Ekeland variational principle, we obtain the multiplicity of non-trivial non-negative solutions. We improve and extend some recent results in the literature.
In this paper a three-step scheme is applied to solve the Camassa-Holm (CH) shallow water equation. The differential order of the CH equation has been reduced in order to facilitate development of numerical scheme in a comparatively smaller grid stencil. Here a three-point seventh-order spatially accurate upwinding combined compact difference (CCD) scheme is proposed to approximate the firstorder derivative term. We conduct modified equation analysis on the CCD scheme and eliminate the leading discretization error terms for accurately predicting unidirectional wave propagation. The Fourier analysis is carried out as well on the proposed numerical scheme to minimize the dispersive error. For preserving Hamiltonians in Camassa- Holm equation, a symplecticity conserving time integrator has been employed. The other main emphasis of the present study is the use of u–P–α formulation to get nondissipative CH solution for peakon-antipeakon and soliton-anticuspon head-on wave collision problems.
In the ambient space of a semidirect product $\mathbb{R}^{2}\rtimes _{A}\mathbb{R}$, we consider a connected domain ${\rm\Omega}\subseteq \mathbb{R}^{2}\rtimes _{A}\{0\}$. Given a function $u:{\rm\Omega}\rightarrow \mathbb{R}$, its ${\it\pi}$-graph is $\text{graph}(u)=\{(x,y,u(x,y))\mid (x,y,0)\in {\rm\Omega}\}$. In this paper we study the partial differential equation that $u$ must satisfy so that $\text{graph}(u)$ has prescribed mean curvature $H$. Using techniques from quasilinear elliptic equations we prove that if a ${\it\pi}$-graph has a nonnegative mean curvature function, then it satisfies some uniform height estimates that depend on ${\rm\Omega}$ and on the supremum the function attains on the boundary of ${\rm\Omega}$. When $\text{trace}(A)>0$, we prove that the oscillation of a minimal graph, assuming the same constant value $n$ along the boundary, tends to zero when $n\rightarrow +\infty$ and goes to $+\infty$ if $n\rightarrow -\infty$. Furthermore, we use these estimates, allied with techniques from Killing graphs, to prove the existence of minimal ${\it\pi}$-graphs assuming the value zero along a piecewise smooth curve ${\it\gamma}$ with endpoints $p_{1},\,p_{2}$ and having as boundary ${\it\gamma}\cup (\{p_{1}\}\times [0,\,+\infty ))\cup (\{p_{2}\}\times [0,\,+\infty ))$.
In this paper we study the multiplicity of non-trivial solutions to a class of nonlinear boundary-value problems of Kirchhoff type. We prove existence results when the problem has nonlinearities with subcritical and with critical Caffarelli–Kohn–Nirenberg exponent.
We examine the regularity of the extremal solution of the nonlinear eigenvalue problem
on a general bounded domain Ω in ℝN, with Navier boundary condition u = Δu on ∂Ω. Firstly, we prove the extremal solution is smooth for any p > 1 and N ⩽ 4, which improves the result of Guo and Wei (Discrete Contin. Dynam. Syst. A 34 (2014), 2561–2580). Secondly, if p = 3, N = 3, we prove that any radial weak solution of this nonlinear eigenvalue problem is smooth in the case Ω = 𝔹, which completes the result of Dávila et al. (Math. Annalen348 (2009), 143–193). Finally, we also consider the stability of the entire solution of Δ2u = –l/up in ℝN with u > 0.
We consider an elliptic self-adjoint first-order differential operator $L$ acting on pairs (2-columns) of complex-valued half-densities over a connected compact three-dimensional manifold without boundary. The principal symbol of the operator $L$ is assumed to be trace-free and the subprincipal symbol is assumed to be zero. Given a positive scalar weight function, we study the weighted eigenvalue problem for the operator $L$. The corresponding counting function (number of eigenvalues between zero and a positive $\unicode[STIX]{x1D706}$) is known to admit, under appropriate assumptions on periodic trajectories, a two-term asymptotic expansion as $\unicode[STIX]{x1D706}\rightarrow +\infty$ and we have recently derived an explicit formula for the second asymptotic coefficient. The purpose of this paper is to establish the geometric meaning of the second asymptotic coefficient. To this end, we identify the geometric objects encoded within our eigenvalue problem—metric, non-vanishing spinor field and topological charge—and express our asymptotic coefficients in terms of these geometric objects. We prove that the second asymptotic coefficient of the counting function has the geometric meaning of the massless Dirac action.
For a non-negative and non-trivial real-valued continuous function hΩ × [0, ∞) such that h(x, 0) = 0 for all x ∈ Ω, we study the boundary-value problem
where Ω ⊆ ℝN, N ⩾ 2, is a bounded smooth domain and Δp:= div(|Du|p–2DDu) is the p-Laplacian. This work investigates growth conditions on h(x, t) that would lead to the existence or non-existence of distributional solutions to (BVP). In a major departure from past works on similar problems, in this paper we do not impose any special structure on the inhomogeneous term h(x, t), nor do we require any monotonicity condition on h in the second variable. Furthermore, h(x, t) is allowed to vanish in either of the variables.