Published online by Cambridge University Press: 08 July 2016
We would like to present a method to compute the incompatibility operator in any system of curvilinear coordinates (components). The procedure is independent of the metric in the sense that the expression can be obtained by means of the basis vectors only, which are first defined as normal or tangential to the domain boundary, and then extended to the whole domain. It is an intrinsic method, to some extent, since the chosen curvilinear system depends solely on the geometry of the domain boundary. As an application, the in-extenso expression of incompatibility in a spherical system is given.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.