We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We improve a previous result about the local energy decay for the damped wave equation on $\mathbb{R}^{d}$. The problem is governed by a Laplacian associated with a long-range perturbation of the flat metric and a short-range absorption index. Our purpose is to recover the decay ${\mathcal{O}}(t^{-d+\unicode[STIX]{x1D700}})$ in the weighted energy spaces. The proof is based on uniform resolvent estimates, given by an improved version of the dissipative Mourre theory. In particular, we have to prove the limiting absorption principle for the powers of the resolvent with inserted weights.
We consider both a problem over ℝn and a boundary problem over an exterior subregion for a Douglis–Nirenberg system of differential operators under limited smoothness assumptions as well as under the assumption of parameter ellipticity in a closed sector Ꮭ in the complex plane with vertex at the origin. We pose each problem on an Lp Sobolev space setting, 1 < p < ∞, and denote by the operator induced in this setting by the problem over ℝn and by Ap the operator induced in this setting by the boundary problem under null boundary conditions. We then derive results pertaining to the Fredholm theory for each of these operators for values of the spectral parameter λ lying in Ꮭ as well as results for these values of λ pertaining to the invariance of their Fredholm domains with p.
We deduce properties of the Koopman representation of a positive entropy probability measure-preserving action of a countable, discrete, sofic group. Our main result may be regarded as a ‘representation-theoretic’ version of Sinaǐ’s factor theorem. We show that probability measure-preserving actions with completely positive entropy of an infinite sofic group must be mixing and, if the group is nonamenable, have spectral gap. This implies that if $\unicode[STIX]{x1D6E4}$ is a nonamenable group and $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ is a probability measure-preserving action which is not strongly ergodic, then no action orbit equivalent to $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ has completely positive entropy. Crucial to these results is a formula for entropy in the presence of a Polish, but a priori noncompact, model.
We compare various functional calculus properties of Ritt operators. We show the existence of a Ritt operator T: X → X on some Banach space X with the following property: T has a bounded H∞-functional calculus with respect to the unit disc 𝔻(that is, T is polynomially bounded) but T does not have any bounded H∞-functional calculus with respect to a Stolz domain of 𝔻 with vertex at 1. Also we show that for an R-Ritt operator the unconditional Ritt condition of Kalton and Portal is equivalent to the existence of a bounded H∞-functional calculus with respect to such a Stolz domain.
We introduce efficient approaches to construct high order finite difference discretizations for solving partial differential equations, based on a composite grid hierarchy. We introduce a modification of the traditional point clustering algorithm, obtained by adding restrictive parameters that control the minimal patch length and the size of the buffer zone. As a result, a reduction in the number of interfacial cells is observed. Based on a reasonable geometric grid setting, we discuss a general approach for the construction of stencils in a composite grid environment. The straightforward approach leads to an ill-posed problem. In our approach we regularize this problem, and transform it into solving a symmetric system of linear of equations. Finally, a stencil repository has been designed to further reduce computational overhead. The effectiveness of the discretizations is illustrated by numerical experiments on second order elliptic differential equations.
An investigation is made of the continuity, the compactness and the spectrum of the Cesàro operator $\mathsf{C}$ when acting on the weighted Banach sequence spaces $\ell _{p}(w)$, $1<p<\infty$, for a positive decreasing weight $w$, thereby extending known results for $\mathsf{C}$ when acting on the classical spaces $\ell _{p}$. New features arise in the weighted setting (for example, existence of eigenvalues, compactness) which are not present in $\ell _{p}$.
We use the best constants in the Khintchine inequality to generalise a theorem of Kato [‘Similarity for sequences of projections’, Bull. Amer. Math. Soc.73(6) (1967), 904–905] on similarity for sequences of projections in Hilbert spaces to the case of unconditional Schauder decompositions in $\ell _{p}$ spaces. We also sharpen a stability theorem of Vizitei [‘On the stability of bases of subspaces in a Banach space’, in: Studies on Algebra and Mathematical Analysis, Moldova Academy of Sciences (Kartja Moldovenjaska, Chişinău, 1965), 32–44; (in Russian)] in the case of unconditional Schauder decompositions in any Banach space.
We establish interior and trace embedding results for Sobolev functions on a class of bounded non-smooth domains. Also, we define the corresponding generalized Maz'ya spaces of variable exponent, and obtain embedding results similar as in the constant case. Some relations between the variable exponent Maz'ya spaces and the variable exponent Sobolev spaces are also achieved. At the end, we give an application of the previous results for the well-posedness of a class of quasi-linear equations with variable exponent.
We offer a Lebesgue-type decomposition of a representable functional on a *-algebra into absolutely continuous and singular parts with respect to another. Such a result was proved by Zs. Szűcs due to a general Lebesgue decomposition theorem of S. Hassi, H.S.V. de Snoo, and Z. Sebestyén concerning non-negative Hermitian forms. In this paper, we provide a self-contained proof of Szűcs' result and in addition we prove that the corresponding absolutely continuous parts are absolutely continuous with respect to each other.
We continue the study of the boundedness of the operator
on the set of decreasing functions in Lp(w). This operator was first introduced by Braverman and Lai and also studied by Andersen, and although the weighted weak-type estimate was completely solved, the characterization of the weights w such that is bounded is still open for the case in which p > 1. The solution of this problem will have applications in the study of the boundedness on weighted Lorentz spaces of important operators in harmonic analysis.
It is proved that the resolvent norm of an operator with a compact resolvent on a Banach space $X$ cannot be constant on an open set if the underlying space or its dual is complex strictly convex. It is also shown that this is not the case for an arbitrary Banach space: there exists a separable, reflexive space $X$ and an unbounded, densely defined operator acting in $X$ with a compact resolvent whose norm is constant in a neighbourhood of zero; moreover $X$ is isometric to a Hilbert space on a subspace of co-dimension $2$. There is also a bounded linear operator acting on the same space whose resolvent norm is constant in a neighbourhood of zero. It is shown that similar examples cannot exist in the co-dimension $1$ case.
Assuming $T_{0}$ to be an m-accretive operator in the complex Hilbert space ${\mathcal{H}}$, we use a resolvent method due to Kato to appropriately define the additive perturbation $T=T_{0}+W$ and prove stability of square root domains, that is,
which is most suitable for partial differential equation applications. We apply this approach to elliptic second-order partial differential operators of the form
in $L^{2}({\rm\Omega})$ on certain open sets ${\rm\Omega}\subseteq \mathbb{R}^{n}$, $n\in \mathbb{N}$, with Dirichlet, Neumann, and mixed boundary conditions on $\partial {\rm\Omega}$, under general hypotheses on the (typically, non-smooth, unbounded) coefficients and on $\partial {\rm\Omega}$.
The relative projection constant${\it\lambda}(Y,X)$ of normed spaces $Y\subset X$ is ${\it\lambda}(Y,X)=\inf \{\Vert P\Vert :P\in {\mathcal{P}}(X,Y)\}$, where ${\mathcal{P}}(X,Y)$ denotes the set of all continuous projections from $X$ onto $Y$. By the well-known result of Bohnenblust, for every $n$-dimensional normed space $X$ and a subspace $Y\subset X$ of codimension one, ${\it\lambda}(Y,X)\leq 2-2/n$. The main goal of the paper is to study the equality case in the theorem of Bohnenblust. We establish an equivalent condition for the equality ${\it\lambda}(Y,X)=2-2/n$ and present several applications. We prove that every three-dimensional space has a subspace with the projection constant less than $\frac{4}{3}-0.0007$. This gives a nontrivial upper bound in the problem posed by Bosznay and Garay. In the general case, we give an upper bound for the number of ($n-1$)-dimensional subspaces with the maximal relative projection constant in terms of the facets of the unit ball of $X$. As a consequence, every $n$-dimensional normed space $X$ has an ($n-1$)-dimensional subspace $Y$ with ${\it\lambda}(Y,X)<2-2/n$. This contrasts with the separable case in which it is possible that every hyperplane has a maximal possible projection constant.
The eigentime identity for one-dimensional diffusion processes on the halfline with an entrance boundary at ∞ is obtained by using the trace of the deviation kernel. For the case of an exit boundary at ∞, a similar eigentime identity is presented with the aid of the Green function. Explicit equivalent statements are also listed in terms of the strong ergodicity or the uniform decay for diffusion processes.
We prove that if two normed-algebra-valued cosine families indexed by a single Abelian group, of which one is bounded and comprised solely of scalar elements of the underlying algebra, differ in norm by less than $1$ uniformly in the parametrising index, then these families coincide.
Laplace operators on finite compact metric graphs are considered under the assumption that matching conditions at graph vertices are of types ${\it\delta}$ and ${\it\delta}^{\prime }$. Assuming rational independence of edge lengths, necessary and sufficient conditions for isospectrality of two Laplacians defined on the same graph are derived and scrutinized. It is proved that the spectrum of a graph Laplacian uniquely determines matching conditions for “almost all” graphs.
Let A be an invertible operator on a complex Banach space X. For a given α ≥ 0, we define the class $\mathcal{D}$Aα(ℤ) (resp. $\mathcal{D}$Aα (ℤ+)) of all bounded linear operators T on X for which there exists a constant CT>0, such that
for all n ∈ ℤ (resp. n∈ ℤ+). We present a complete description of the class $\mathcal{D}$Aα (ℤ) in the case when the spectrum of A is real or is a singleton. If T ∈ $\mathcal{D}$A(ℤ) (=$\mathcal{D}$A0(ℤ)), some estimates for the norm of AT-TA are obtained. Some results for the class $\mathcal{D}$Aα (ℤ+) are also given.
Let X and Y be infinite-dimensional complex Banach spaces, and ${\mathcal B}$(X) (resp. ${\mathcal B}$(Y)) be the algebra of all bounded linear operators on X (resp. on Y). For an operator T ∈ ${\mathcal B}$(X) and a vector x ∈ X, let σT(x) denote the local spectrum of T at x. For two nonzero vectors x0 ∈X and y0 ∈ Y, we show that a map ϕ from ${\mathcal B}$(X) onto ${\mathcal B}$(Y) satisfies
if and only if there exists a bijective bounded linear mapping A from X into Y such that Ax0 = y0 and either ϕ(T) = ATA−1 or ϕ(T) = -ATA−1 for all T ∈ ${\mathcal B}$(X).
We find the potential function whose gradient best approximates an observed square integrable function on a bounded open set subject to prescribed weight factors. With an appropriate choice of topology, we show that the gradient operator is a bounded linear operator and that the desired potential function is obtained by solving a second-order, self-adjoint, linear, elliptic partial differential equation. The main result makes a precise analogy with a standard procedure for the best approximate solution of a system of linear algebraic equations. The use of bounded operators means that the definitive equation is expressed in terms of well-defined functions and that the error in a numerical solution can be calculated by direct substitution into this equation. The proposed method is illustrated with a hypothetical example.
Let $X={\mathcal{C}}_{0}(2{\it\pi})$ or $X=L_{1}[0,2{\it\pi}]$. Denote by ${\rm\Pi}_{n}$ the space of all trigonometric polynomials of degree less than or equal to $n$. The aim of this paper is to prove the minimality of the norm of de la Vallée Poussin’s operator in the set of generalised projections ${\mathcal{P}}_{{\rm\Pi}_{n}}(X,\,{\rm\Pi}_{2n-1})=\{P\in {\mathcal{L}}(X,{\rm\Pi}_{2n-1}):P|_{{\rm\Pi}_{n}}\equiv \text{id}\}$.