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Abstract. We offer a Lebesgue-type decomposition of a representable functional
on a ∗-algebra into absolutely continuous and singular parts with respect to another.
Such a result was proved by Zs. Szűcs due to a general Lebesgue decomposition
theorem of S. Hassi, H.S.V. de Snoo, and Z. Sebestyén concerning non-negative
Hermitian forms. In this paper, we provide a self-contained proof of Szűcs’ result and
in addition we prove that the corresponding absolutely continuous parts are absolutely
continuous with respect to each other.
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1. Introduction. S. P. Gudder in [3] presented a Lebesgue-type decomposition
theorem for positive functionals on a unital Banach ∗-algebra A . In fact, he proved that
for given two positive functionals f, g, there exist two positive functionals ga, gs such
that g = ga + gs where ga is absolutely continuous with respect to f and gs is f -semi-
singular. Here, the concepts of absolute continuity and semi-singularity read as follows:
g is called f -absolutely continuous (g � f ) if the properties f (a∗

nan) → 0 and g((an −
am)∗(an − am)) → 0 imply g(a∗

nan) → 0. Furthermore, g is called f -semi-singular (g ⊥
f ) if there exists a sequence (an)n∈� such that f (a∗

nan) → 0, g((an − am)∗(an − am)) → 0
and g(a) = lim

n→∞ g(a∗
na) for any a ∈ A . Zs. Szűcs [13] proved that the concept of semi-

singularity is symmetric in the sense that g ⊥ f if and only if f ⊥ g. Moreover, f ⊥ g
holds if and only if h = 0 is the unique positive functional which satisfies h ≤ f and
h ≤ g. This latter property is expressed by saying that f and g are mutually singular.

Generalizing Gudder’s results, Szűcs in [15] developed a Lebesgue decomposition
theory for representable forms over a complex algebra, and as a particular case, he also
considered representable functionals of a ∗-algebra ([15, Theorem 3.1]). His treatment
however makes essentially use of a general Lebesgue decomposition theorem due to
Hassi, de Snoo and Sebestyén [6] concerning non-negative Hermitian forms, cf. also
[12]. The aim of this paper is to provide a self-contained proof of Szűcs’ decomposition
theorem. Our treatment is similar to that of [16] in which the Lebesgue decomposition
theory of positive operators on a Hilbert space is discussed. As a new result, we
shall also show that the corresponding absolutely continuous parts fa and ga, arising
by decomposing the representable positive functional f with respect to g, and g with
respect to f , respectively, are absolutely continuous with respect to each other. A similar
statement was proved by T. Titkos [18] in the context of non-negative Hermitian
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forms. Finally, we apply our results to obtain two classical results of the Lebesgue
decomposition theory: the Lebesgue decomposition of measures (see [4]) and the
Lebesgue–Darst decomposition of finitely additive set functions (see [1]).

2. Preliminaries. To begin with, we recall briefly the classical Gelfand–Neumark–
Segal (GNS) construction which we shall use as a basic tool in our paper. The procedure
presented below is slightly different from what can be find in the literature, see e.g.
[2, 8, 9], or [10]. Why we use this modified version is because we want to point out the
close analogy with the Lebesgue decomposition theory of positive operators in Hilbert
spaces, see [16]. To this aim, we introduce first the concept of a positive operator from
a vector space into its antidual, cf. [11]. Let A be a (not necessarily unital) ∗-algebra,
and denote by A ∗ and ¯A ∗ the algebraic dual and antidual of A , respectively. Here,
the latter one is understood as the vector space of all mappings ϕ : A → � satisfying

ϕ(a + b) = ϕ(a) + ϕ(b), ϕ(λa) = λϕ(a), a, b ∈ A , λ ∈ �.

The elements of ¯A ∗ are referred to as antilinear functionals of A . For ϕ ∈ ¯A ∗ and
a ∈ A , we shall use the notation

〈ϕ, a〉 := ϕ(a).

In the centre of our attention, there are those antilinear functionals which derive
from a given positive functional f (f (a∗a) ≥ 0, a ∈ A ), defined by the correspondence

A → �, x 
→ f (x∗a). (2.1)

The mapping (a, b) 
→ f (b∗a) defines obviously a semi-inner product on A , hence the
Cauchy–Schwarz inequality implies

|f (b∗a)|2 ≤ f (a∗a)f (b∗b), a, b ∈ A . (2.2)

We associate now a positive operator A with the positive functional f : For fixed
a ∈ A , let Aa denote the functional (2.1). Then, A is a linear operator of A into ¯A ∗

which is non-negative definite in the sense that

〈Aa, a〉 = f (a∗a) ≥ 0, a ∈ A .

Observe immediately that A is symmetric:

〈Aa, b〉 = 〈Ab, a〉, a, b ∈ A .

Hereinafter, we make two additional assumptions on f : suppose that

|f (a)|2 ≤ C · f (a∗a), a ∈ A , (2.3)

holds for a non-negative constant C and furthermore that

f (b∗a∗ab) ≤ λa · f (b∗b), b ∈ A . (2.4)

holds for any a ∈ A with some λa ≥ 0. We notice here that (2.4) holds automatically
in Banach ∗-algebras, namely by λa = r(a∗a), where r stands for the spectral radius. As
it is well known, assumptions (2.3) and (2.4) express the representability of the positive
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functional f . That means that there exist a Hilbert space H, a cyclic vector ζ ∈ H, and
a ∗-representation π of A into B(H) such that

f (a) = (π (a)ζ | ζ ), a ∈ A .

Such a triplet (H, π, ζ ) is obtained due to the well-known GNS construction (see
[11]): Consider the range space ran A of the linear operator A in ¯A ∗. This becomes a
pre-Hilbert space endowed by the inner product

(Aa | Ab)A := f (b∗a), a ∈ A . (2.5)

(Note that the Cauchy–Schwarz inequality (2.2) shows that (Aa | Aa)A = 0 implies
Aa = 0 for a ∈ A and hence that ( · | · )A defines an inner product on ran A, indeed.)
The completion HA is then a Hilbert space in which we introduce a densely defined
continuous operator πA(x) for any fixed x ∈ A by letting

πA(x)(Aa) := A(xa), a ∈ A . (2.6)

The continuity of πA(x) is due to (2.4):

(A(xa) | A(xa))A = f (a∗x∗xa) ≤ λx · f (a∗a) = λx · (Aa | Aa)A .

If we continue to write πA(x) for its unique norm preserving extension, then it is easy to
verify that πA is a ∗-representation of A in B(HA). The cyclic vector of πA is obtained
by considering the linear functional Aa 
→ f (a) from HA into � whose continuity is
guaranteed by (2.3). The Riesz representation theorem yields then a unique vector
ζA ∈ HA satisfying

f (a) = (Aa | ζA)A , a ∈ A . (2.7)

It is again easy to verify identity

πA(a)ζA = Aa, a ∈ A , (2.8)

whence we infer that

f (a) = (πA(a)ζA | ζA)A , a ∈ A . (2.9)

That ζA is a cyclic vector of πA follows from identity (2.8).

3. Lebesgue decomposition for representable functionals. Throughout this
section, we fix two representable positive functionals f and g on the ∗-algebra A .
Let A and B stand for the positive operators associated with f and g, respectively.
The GNS-triplets (HA, πA, ζA) and (HB, πB, ζB), induced by f and g, respectively, are
defined along the construction of the previous section. Let us recall the notions of
absolute continuity and singularity regarding positive functionals (see [3] and [14]): g
is called absolutely continuous with respect to f (shortly, g is f -absolutely continuous)
if

f (a∗
nan) → 0 and g((an − am)∗(an − am)) → 0 imply g(a∗

nan) → 0
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for any sequence (an)n∈� of A . On the other hand, f and g are mutually singular if the
properties h ≤ f and h ≤ g imply h = 0 for any representable positive functional h.

Our aim in the rest of this section is to establish a Lebesgue decomposition theorem
for representable positive functionals. More precisely, we shall show that g splits into
a sum g = ga + gs where both ga and gs are representable positive functionals with ga

f -absolutely continuous and gs f -singular. Such a result was proved by Gudder [3] for
positive functionals on a unital Banach ∗-algebra and by Szűcs [15] in a more general
setting, namely for representable forms over a complex algebra.

Our treatment is based on the following observation: If (an)n∈� is a sequence from
A such that

(Aan | Aan)A → 0 and (B(an − am) | B(an − am))B → 0, (3.1)

then Ban → ζ for some ζ ∈ H. If g is f -absolutely continuous, then ζ must be 0. We
introduce therefore the following closed linear subspace of HB (cf. also [7, 12, 16]):

M := {ζ ∈ HB | ∃(an)n∈� ⊆ A , (Aan | Aan)A → 0, Ban → ζ in HB}. (3.2)

In fact, M is nothing but the so called multivalued part of the closure of the following
linear relation:

T := {(Aa, Ba) ∈ HA × HB | a ∈ A }, (3.3)

cf. [5] and [16]. That is to say,

M = mul T := {ζ ∈ HB | (0, ζ ) ∈ T}.

Furthermore, g is f -absolutely continuous precisely if M = {0}, i.e., when T is (the
graph of) a closable operator. We will see below that M = HB holds if and only if g and
f are mutually singular. In any other cases, M is a proper closed πB-invariant subspace
of HB (see Lemma 3.1 below).

Let P stand for the orthogonal projection of HB onto M, and introduce the
functionals ga and gs by setting:

ga(a) := (πB(a)(I − P)ζB | (I − P)ζB)B , gs(a) := (πB(a)PζB | PζB)B , (3.4)

for a ∈ A . Our main purpose is to prove that both ga and gs are representable positive
functionals such that g = ga + gs where ga is f -absolutely continuous and gs is singular
with respect to f . Moreover, ga is maximal in the sense that h ≤ ga holds for each
f -absolutely continuous representable functional h satisfying h ≤ g.

LEMMA 3.1. Let A be ∗-algebra and let f, g be representable functionals of A . Then,
M and M⊥ are both πB-invariant subspaces of HB, and the following identities hold:

(a) πB(a)PζB = PπB(a)ζB = P(Ba), a ∈ A ,
(b) πB(a)(I − P)ζB = (I − P)πB(a)ζB = (I − P)(Ba), a ∈ A .

Proof. In order to prove the πB-invariancy of M fix a ∈ A and ζ ∈ M, and consider
a sequence (an)n∈� from A satisfying

(Aan | Aan)A → 0 and Ban → ζ in HB.
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Then, we have

A(aan) = πA(a)(Aan) → 0 and B(aan) = πB(a)(Ban) → πB(a)ζ in HB,

so that π (a)ζ ∈ M, indeed. Consequently, πB(a)〈M〉 ⊆ M for all a ∈ A , as claimed.
That M⊥ is also πB-invariant follows immediately from the fact that πB is a ∗-
representation. We are going to prove now (a): for a ∈ A we have πB(a)ζB = Ba by
(2.8) so it suffices to show the first equality of (a). So fix ζ ∈ M; by the πB-invariancy
of M, we have that

(PπB(a)ζB − πB(a)PζB | ζ )B = (πB(a)ζB − πB(a)PζB | ζ )B
= (πB(a)(I − P)ζB | ζ )B = 0,

as πB(a)(I − P)ζB ∈ M⊥ which yields (a). Assertion (b) is obtained easily from (a). �
As an immediate consequence, we have the following:

COROLLARY 3.2. Both of the positive functionals ga and gs are representable and their
sum satisfies

g = ga + gs. (3.5)

More precisely, πB,a := πB(·)(I − P) and πB,s := πB(·)P are both ∗-representations of A
in the Hilbert spaces M⊥ and M, respectively, with cyclic vectors (I − P)ζB and PζB,
respectively, which satisfy

ga(a) = (πB,a(a)(I − P)ζB | (I − P)ζB)B , gs(a) = (πB,s(a)PζB | PζB)B , (3.6)

for a ∈ A .

We are now in position to state and prove the main result of the paper, the Lebesgue
decomposition theorem of representable functionals ([15, Theorem 3.1]):

THEOREM 3.3. Let A be a ∗-algebra, f, g representable functionals on A . Then

g = ga + gs

is according to the Lebesgue decomposition, that is to say, both ga and gs are representable
functionals such that ga is absolutely continuous with respect to f and that gs and f are
mutually singular. Furthermore, ga is maximal in the following sense: h ≤ g and h � f
imply h ≤ ga for any representable positive functional h.

Proof. We start by proving that ga is f -absolutely continuous. Consider therefore
a sequence (an)n∈� such that

f (a∗
nan) → 0, and ga((an − am)∗(an − am)) → 0.

Then, by Lemma 3.1 we have

(Aan | Aan)A → 0, ((I − P)(B(an − am)) | (I − P)(B(an − am)))B → 0.

Nevertheless, the operator HA ⊇ ran A → HB, Ax 
→ (I − P)(Bx) coincides with the
so-called regular part Treg (see [5, (4.1)]) of the linear relation T of (3.3) hence it is
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closable in virtue of [5, Theorem 4.1]. Consequently,

ga(a∗
nan) = ((I − P)(Ban) | (I − P)(Ban))B → 0,

which proves the absolute continuity part of the statement.
In the next step, we prove the extremal property of ga. Consider a representable

functional h on A such that h ≤ g and that h is f -absolutely continuous. Then, we have
by representability

|h(a)|2 ≤ C · h(a∗a) ≤ C · g(a∗a) = C · (Ba | Ba)B , a ∈ A ,

hence the linear functional Ba 
→ h(a) is continuous on ran B of HB. The Riesz
representation theorem yields therefore a (unique) representing vector ζh ∈ HB that
fulfils

h(a) = (Ba | ζh)B , a ∈ A . (3.7)

We state that ζh ∈ M⊥. Fix therefore ζ ∈ M and consider a sequence (an)n∈� from A
such that

(Aan | Aan)A → 0 and Ban → ζ in HB.

In particular, (Ban)n∈� is Cauchy in HB, therefore h((an − am)∗(an − am)) → 0 holds by
h ≤ g and thus h(a∗

nan) → 0 as h is f -absolutely continuous. That implies that

|(ζ | ζh)B |2 = lim
n→∞|(Ban | ζh)B |2 = lim

n→∞|h(an)|2 ≤ C · lim
n→∞ h(a∗

nan) = 0,

which yields the desired identity. Fix now a ∈ A ; by Lemma 3.1 and according to
identity (I − P)ζh = ζh, we conclude that

h(a∗a) = (B(a∗a) | ζh)B = ((I − P)(Ba) | πB(a)ζh)B

≤ ‖(I − P)(Ba)‖B‖πB(a)ζh‖B =
√

ga(a∗a)‖πB(a)ζh‖B ,

thus h ≤ ga will be obtained once we prove that

(πB(a)ζh | πB(a)ζh)B ≤ h(a∗a), a ∈ A . (3.8)

By using the density of ran B in HB, it follows that

(πB(a)ζh | πB(a)ζh)B = sup{|(Bx | πB(a)ζh)B‖2 | x ∈ A , (Bx | Bx)B ≤ 1}
= sup{|(B(a∗x) | ζh)B‖2 | x ∈ A , g(x∗x) ≤ 1}
= sup {|h(a∗x)|2 | x ∈ A , g(x∗x) ≤ 1}
≤ sup {h(a∗a)h(x∗x) | x ∈ A , g(x∗x) ≤ 1}
≤ h(a∗a),

as it is claimed.
There is nothing left but to prove that gs and f are singular with respect to each

other. Fix therefore a representable functional h of A such that h ≤ f and h ≤ gs.
Then, clearly h ≤ g and h is f -absolutely continuous. By the previous step, there exists

https://doi.org/10.1017/S0017089515000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000300


LEBESGUE DECOMPOSITION FOR REPRESENTABLE FUNCTIONALS 497

ζh ∈ M⊥ with property (3.7). By density of ran B, we may choose (an)n∈� from A such
that Ban → ζh in HB. Then, we find that

|(ζh | ζh)B |2 = lim
n→∞|(Ban | ζh)B |2 = lim

n→∞|h(an)|2 ≤ C · lim sup
n→∞

h(a∗
nan)

≤ C · lim sup
n→∞

gs(a∗
nan) = C · lim sup

n→∞
(P(Ban) | P(Ban))B

= C · (Pζh | Pζh)B = 0,

whence h = 0. The proof is therefore complete. �

4. Mutually absolute continuity of the absolutely continuous parts. Let f, g be
representable positive functionals on the ∗-algebra A and consider the Lebesgue
decompositions

f = fa + fs, g = ga + gs,

where fa, fs and ga, gs are obtained along the procedure presented in the previous
section. In accordance with Theorem 3.3, fa � g and ga � f . Our purpose in this
section is to show that the absolutely continuous parts fa and ga are mutually absolutely
continuous, that is that fa � ga and ga � fa hold true. The heart of the matter is in the
following lemma which may be of interest on its own right.

LEMMA 4.1. Let T be a linear relation between two Hilbert spaces H and K. Let
T stand for the closure of T and let P, Q be the orthogonal projections onto ker T and
mul T, respectively. Then

S0 := {((I − P)h, (I − Q)k) | (h, k) ∈ T}

is (the graph of) a closable linear operator whose closure S0 is one-to-one.

Proof. We shall show that

S := {((I − P)h, (I − Q)k) | (h, k) ∈ T}

is an invertible closed operator. As S0 ⊆ S, this contains our original assertion.
Consider first the so-called regular part (T)reg of T , which is defined by

(T)reg := {(h, (I − Q)k) | (h, k) ∈ T},

cf. [5]. Let us denote it by R for the sake of brevity. We claim first that R is a closed
linear operator such that R ⊆ T . The proof of this statement can be found in [5],
we include here a short proof however, for the sake of the reader. It is seen easily
that {0} × mul T ⊆ T , and that T − ({0} × mul T) = R. Consequently, R ⊆ T and, as
{0} × mul T and R are orthogonal to each other, we infer that R = T � ({0} × mul T),
hence R is closed. To see that R is an operator, assume that (0, (I − Q)k) ∈ R where
(0, k) ∈ T . This implies that k ∈ mul T whence (I − Q)k = 0, that is, R is an operator,
indeed. Observe furthermore that ker R = ker T : indeed, by the definition of R it is
clear that ker T ⊆ ker R, and the converse inclusion is due to R ⊆ T .

https://doi.org/10.1017/S0017089515000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000300


498 ZSIGMOND TARCSAY

Consider now the relation (R−1)reg. Then, (R−1)reg is a a closed linear operator due
to the above reasoning, such that (R−1)reg ⊆ R−1. At the same time,

mul R−1 = ker R = ker T,

whence

(R−1)reg = {(k′, (I − P)h′) | (h′, k′) ∈ R}
= {((I − Q)k, (I − P)h) | (h, k) ∈ T} = S−1.

We conclude therefore that S−1 is a closed operator, such that S−1 ⊆ R−1, or
equivalently, S ⊆ R. Hence, S is an operator as well. �

THEOREM 4.2. Let f and g be representable positive functionals on the ∗-algebra A .
Denote by fa and ga the g-absolutely continuous and the f -absolutely continuous parts of
f and g, respectively. Then, fa and ga are absolutely continuous with respect to each other:
fa � ga and ga � fa.

Proof. Consider the linear relation T of (3.3) and let P, Q be the orthogonal
projections onto ker T and mul T , respectively. By Theorem 3.3, the corresponding
absolutely continuous parts satisfy

fa(a∗a) = ‖(I − P)Aa‖2
A, ga(a∗a) = ‖(I − Q)Ba‖2

B, a ∈ A .

According to Lemma 4.1, the relation

S := {((I − P)Aa, (I − Q)Ba) | a ∈ A }
is (the graph of) a closable operator. Hence, if

fa(a∗
nan) = ‖(I − P)Aan‖2

A → 0,

and

ga((an − am)∗(an − am)) = ‖(I − Q)B(an − am)‖2
B → 0

hold for some (an)n∈�, then

ga(a∗
nan) = ‖(I − Q)Ban‖2

B → 0,

whence we deduce that ga is fa-absolutely continuous. That fa is ga-absolutely
continuous follows from the fact that S is one-to-one with closable inverse, according
again to Lemma 4.1. �

5. Examples. We conclude the paper with some applications of Theorem 3.3.
Namely, we prove two classical results of the Lebesgue decomposition theory:
the Lebesgue decomposition of measures (see e.g. [4]) and the Lebesgue–Darst
decomposition of finitely additive set functions (see [1], or [17] for a functional analytic
approach).

EXAMPLE 5.1. Let T be a non-empty set with a σ -algebra R on it. Denote by
S (T,R) the unital ∗-algebra of T → � measurable step functions. If we consider a
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finite measure μ on R, then the mapping

ϕ 
→
∫

ϕ dμ

defines a positive linear functional on S (T,R). Observe that this functional is
representable: indeed, for ϕ,ψ ∈ S (T,R) we have

∣∣∣
∫

ϕ dμ

∣∣∣2
≤ μ(T) ·

∫
|ϕ|2 dμ,

∫
|ϕψ |2 dμ ≤ M2

ϕ

∫
|ψ |2 dμ,

where Mϕ is the maximum of the step function |ϕ|. Let us denote this representable
functional by f . Assume that we are given another finite measure ν on R and let g
stand for the representable functional induced by ν. According to Theorem 3.3, we
may consider the Lebesgue decomposition g = ga + gs of g with respect to f . One can
easily verify that the mappings

νa(E) := ga(χE ) and νs(E) := gs(χE )

are non-negative valued additive set functions on R. Here, χE denotes the characteristic
function of the measurable set E. Moreover, inequalities νa, νs ≤ ν imply that νa and
νs are σ -additive. It is clear that

ν = νa + νs. (5.1)

We claim that the decomposition (5.1) is the Lebesgue decomposition of ν with respect
to μ, that is, νa is μ-absolutely continuous and νs is μ-singular. Indeed, let E ∈ R
such that μ(E) = 0. By choosing ϕn := χE for any integer n, we see that f (ϕ∗

nϕn) → 0
and ga((ϕn − ϕm)∗(ϕn − ϕm)) → 0, whence we infer that νa(E) = ga(ϕn) → 0, due to the
f -absolute continuity of ga. This means that νa is μ-absolutely continuous. To prove
that μ and νs are mutually singular, consider a measure ϑ on R such that ϑ ≤ μ, νs. We
claim that ϑ = 0. Indeed, if h denotes the representable functional induced by ϑ , then
by inequalities h ≤ f, gs and due to f -singularity of gs we conclude that h = 0. Hence,
ϑ = 0 as well, which means that μ and νs are mutually singular. Finally, if μ = μa + μs

is the Lebesgue decomposition of μ with respect to ν then we obtain that μa � νa and
νa � μa, in the view of Theorem 4.2.

EXAMPLE 5.2. Let R be a ring of sets over the non-empty set T and denote by
S (T,R) the (not necessarily unital) ∗-algebra of T → � measurable step functions.
Consider two non-negative valued (finitely) additive set functions α, β on R which we
suppose to be bounded:

sup
E∈R

α(E) < +∞, sup
E∈R

β(E) < +∞.

Recall that β is called α-absolutely continuous if for any ε > 0 there is δ > 0 such
that β(E) < ε for any E ∈ R with α(E) < δ. Furthermore, α and β are called mutually
singular if ϑ = 0 is the unique non-negative additive set function such that ϑ ≤ α, β.
The Lebesgue–Darst decomposition theorem ([17, Theorem 4]) states that there exist
two non-negative additive set functions βa, βs on R with βa α-absolutely continuous
and βs α-singular such that β = βa + βs. Below, we are going to prove this result due
to Theorem 3.3. To this aim, let us define first the representable positive functionals
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f, g on S (T,R) by setting

f (ϕ) :=
∫

ϕ dα, g(ϕ) :=
∫

ϕ dβ.

The representability of f, g follows similarly as in Example 5.1. Let us consider the
Lebesgue decomposition g = ga + gs of g with respect to f . If we set

βa(E) := ga(χE ) and βs(E) := gs(χE ),

then clearly, both βa and βs are non-negative valued additive set functions on R such
that

β = βa + βs. (5.2)

We claim that (5.2) is according to the Lebesgue–Darst decomposition. Indeed, by [12,
Theorem 3.2 (a)], the f -absolute continuity of ga implies α-absolutely continuity on
βa. That βs and α are mutually singular is deduced by the argument used by proving
the singularity of νs and μ in Example 5.1. Furthermore, if we consider the Lebesgue–
Darst decomposition α = αa + αs of α with respect to β then, in the view of Theorem
4.2, we also obtain that αa and βa are absolutely continuous with respect to each other.
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