We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study addresses the Aircraft Reactive Scheduling Problem (ARSP) on multiple parallel runways in response to operational disruptions. We specifically consider three disruptive event types; flight cancelations, delays and unexpected arrivals. Interruptions to aircraft schedules due to various reasons (e.g. bad weather conditions) may render the initial schedule not optimal or infeasible. In this paper, the ARSP is conceptualised as a multi-objective optimisation problem wherein considerations encompass not only the quality of the schedule but also its stability, defined as its conformity to an initial schedule, are of interest. A mixed-integer linear programming (MILP) model is introduced to obtain optimal solutions under different policies. Repair and regeneration heuristic approaches are developed for larger instances for which optimal solutions are time-consuming to obtain. While prevailing literature tends to concentrate on individual disruption types, our investigation diverges by concurrently addressing diverse disruption types through multiple disruptive events. We introduce alternative reactive scheduling methodologies wherein the model autonomously adapts by dynamically choosing from a range of candidate solution methods, considering conflicting objectives related to both quality and stability. A computational study is conducted, and we compare the solutions of heuristics to optimal solutions or the best solution found within a time limit, and their performances are assessed in terms of schedule stability, solution quality and computational time. We compare the solutions of heuristics and optimal solutions (i.e. the best solution found so far), and their performances are assessed in terms of schedule stability, solution quality and computational time.
Although active flow control based on deep reinforcement learning (DRL) has been demonstrated extensively in numerical environments, practical implementation of real-time DRL control in experiments remains challenging, largely because of the critical time requirement imposed on data acquisition and neural-network computation. In this study, a high-speed field-programmable gate array (FPGA) -based experimental DRL (FeDRL) control framework is developed, capable of achieving a control frequency of 1–10 kHz, two orders higher than that of the existing CPU-based framework (10 Hz). The feasibility of the FeDRL framework is tested in a rather challenging case of supersonic backward-facing step flow at Mach 2, with an array of plasma synthetic jets and a hot-wire acting as the actuator and sensor, respectively. The closed-loop control law is represented by a radial basis function network and optimised by a classical value-based algorithm (i.e. deep Q-network). Results show that, with only ten seconds of training, the agent is able to find a satisfying control law that increases the mixing in the shear layer by 21.2 %. Such a high training efficiency has never been reported in previous experiments (typical time cost: hours).
A millimetric droplet may bounce and self-propel across the surface of a vertically vibrating liquid bath, guided by the slope of its accompanying Faraday wave field. The ‘walker’, consisting of a droplet dressed in a quasi-monochromatic wave form, is a spatially extended object that exhibits many phenomena previously thought exclusive to the quantum realm. While the walker dynamics can be remarkably complex, steady and periodic states arise in which the energy added by the bath vibration necessarily balances that dissipated by viscous effects. The system energetics may then be characterised in terms of the exchange between the bouncing droplet and its guiding or ‘pilot’ wave. We here characterise this energy exchange by means of a theoretical investigation into the dynamics of the pilot-wave system when time-averaged over one bouncing period. Specifically, we derive simple formulae characterising the dependence of the droplet’s gravitational potential energy and wave energy on the droplet speed. Doing so makes clear the partitioning between the gravitational, wave and kinetic energies of walking droplets in a number of steady, periodic and statistically steady dynamical states. We demonstrate that this partitioning depends exclusively on the ratio of the droplet speed to its speed limit.
The proportional–integral–derivative (PID) controller remains widely used in industrial applications today due to its simplicity and ease of implementation. However, tuning the controller’s gains is crucial for achieving desired performance. This study compares the performance of PID controllers within a cascade control architecture designed for both position and attitude control of a quadcopter. Particle swarm optimisation (PSO), grey wolf optimisation (GWO), artificial bee colony (ABC), and differential evaluation (DE) methods are employed to optimally tune the PID parameters. A set of PID gains is determined offline by minimising various modified multi-objective functions based on different fitness measures: IAE, ISE, ITAE and ITSE. These measures are adapted as fitness functions for position and attitude control. A simulation study is conducted to determine which fitness function yields the optimal PID gains, as evidenced by the lowest values of the objective functions. In these simulations, two different desired trajectories are designed, and the controllers are applied to ensure the quadcopter tracks these trajectories accurately. Additionally, to test the robustness of the flight control architecture and the finely tuned PID controllers against various environmental effects and parametric uncertainties, several case scenarios are also explored.
A single particle representation of a self-propelled microorganism in a viscous incompressible fluid is derived based on regularised Stokeslets in three dimensions. The formulation is developed from a limiting process in which two regularised Stokeslets of equal and opposite strength but with different size regularisation parameters approach each other. A parameter that captures the size difference in regularisation provides the asymmetry needed for propulsion. We show that the resulting limit is the superposition of a regularised stresslet and a potential dipole. The model framework is then explored relative to the model parameters to provide insight into their selection. The particular case of two identical particles swimming next to each other is presented and their stability is investigated. Additional flow characteristics are incorporated into the modelling framework with in the addition of a rotlet double to characterise rotational flows present during swimming. Lastly, we show the versatility of deriving the model in the method of regularised Stokeslets framework to model wall effects of an infinite plane wall using the method of images.
The hydrodynamic analysis of motion of small particles (e.g. proteins) within lipid bilayers appears to be naturally suitable for the framework of two-dimensional Stokes flow. Given the Stokes paradox, the problem in an unbounded domain is ill-posed. In his classical paper, Saffman (J. Fluid Mech., vol. 73, 1976, pp. 593–602) proposed several possible remedies, one of them based upon the finite extent of the membrane. Considering a circular boundary, that regularisation was briefly addressed by Saffman in the isotropic configuration, where the particle is concentrically positioned in the membrane. We investigate here the hydrodynamic problem in bounded membranes for the general case of eccentric particle position and a rectilinear motion in an arbitrary direction. Symmetry arguments provide a representation of the hydrodynamic drag in terms of ‘radial’ and ‘transverse’ coefficients, which depend upon two parameters: the ratio $\lambda$ of particle to membrane radii and the eccentricity $\beta$. Using matched asymptotic expansions we obtain closed-form approximations for these coefficients in the limit where $\lambda$ is small. In the isotropic case ($\beta = 0$) we find that the drag coefficient is $4\pi /(\ln ({1}/{\lambda })- {1})$, contradicting the value $4\pi /(\ln ({1}/{\lambda })- {1}/{2})$ obtained by Saffman. We explain the oversight in Saffman’s argument.
We conducted a series of pore-scale numerical simulations on convective flow in porous media, with a fixed Schmidt number of 400 and a wide range of Rayleigh numbers. The porous media are modeled using regularly arranged square obstacles in a Rayleigh–Bénard (RB) system. As the Rayleigh number increases, the flow transitions from a Darcy-type regime to an RB-type regime, with the corresponding $Sh$–$Ra_D$ relationship shifting from sublinear scaling to the classical 0.3 scaling of RB convection. Here, $Sh$ and $Ra_D$ represent the Sherwood number and the Rayleigh–Darcy number, respectively. For different porosities, the transition begins at approximately $Ra_D = 4000$, at which point the characteristic horizontal scale of the flow field is comparable to the size of a single obstacle unit. When the thickness of the concentration boundary layer is less than approximately one-sixth of the pore spacing, the flow finally enters the RB regime. In the Darcy regime, the scaling exponent of $Sh$ and $Ra_D$ decreases as porosity increases. Based on the Grossman–Lohse theory (J. Fluid Mech. vol. 407, 2000, pp. 27–56; Phys. Rev. Lett. vol. 86, 2001, p. 3316), we provide an explanation for the scaling laws in each regime and highlight the significant impact of mechanical dispersion effects during the development of the plumes. Our findings provide some new insights into the validity range of the Darcy model.
The evolution of a Lamb–Oseen vortex is studied in a stratified rotating fluid under the complete Coriolis force. In a companion paper, it was shown that the non-traditional Coriolis force generates a vertical velocity field and a vertical vorticity anomaly at a critical radius when the Froude number is larger than unity. Below a critical non-traditional Rossby number $\widetilde {Ro}$, a two-dimensional shear instability was next triggered by the vorticity anomaly. Here, we test the robustness of this two-dimensional evolution against small three-dimensional perturbations. Direct numerical simulations (DNS) show that the two-dimensional shear instability then develops only in an intermediate range of non-traditional Rossby numbers for a fixed Reynolds number $Re$. For lower $\widetilde {Ro}$, the instability is three-dimensional. Stability analyses of the flows in the DNS prior to the instability onset fully confirm the existence of these two competing instabilities. In addition, stability analyses of the local theoretical flows at leading order in the critical layer demonstrate that the three-dimensional instability is due to the shear of the vertical velocity. For a given Froude number, its growth rate scales as $Re^{2/3}/\widetilde {Ro}$, whereas the growth rate of the two-dimensional instability depends on $Re/\widetilde {Ro}^2$, provided that the critical layer is smoothed by viscous effects. However, the growth rate of the three-dimensional instability obtained from such local stability analyses agrees quantitatively with those of the DNS flows only if second-order effects due to the traditional Coriolis force and the buoyancy force are taken into account. These effects tend to damp the three-dimensional instability.
Analytical expressions are derived for the velocity field, and effective slip lengths, associated with pressure-driven longitudinal flow in a circular superhydrophobic pipe whose boundary is patterned with a general arrangement of longitudinal no-shear stripes not necessarily possessing any rotational symmetry. First, the flow in a superhydrophobic pipe with $M$ different no-shear stripes in general position is found for $M=1, 2, 3$. The method, which is based on use of so-called prime functions, is such that with these cases covered, generalisation to any $M \geqslant 1$ follows in a straightforward manner. It is shown how any one of these solutions can be generalised to solve for flow along superhydrophobic pipes where that pattern of $M$ menisci is repeated $N \geqslant 1$ times around the boundary in a rotational symmetric arrangement. The work provides an extension of the canonical pipe flow solution for an $N$-fold rotationally symmetric pattern of no-shear stripes due to Philip (Angew. Math. Phys., vol. 23, 1972, pp. 353–372). The novel solution method, and the solutions that it produces, have significance for a wide range of mixed boundary value problems involving Poisson’s equation arising in other applications.
We analyse the steady viscoelastic fluid flow in slowly varying contracting channels of arbitrary shape and present a theory based on the lubrication approximation for calculating the flow rate–pressure drop relation at low and high Deborah ($De$) numbers. Unlike most prior theoretical studies leveraging the Oldroyd-B model, we describe the fluid viscoelasticity using a FENE-CR model and examine how the polymer chains’ finite extensibility impacts the pressure drop. We employ the low-Deborah-number lubrication analysis to provide analytical expressions for the pressure drop up to $O(De^4)$. We further consider the ultra-dilute limit and exploit a one-way coupling between the parabolic velocity and elastic stresses to calculate the pressure drop of the FENE-CR fluid for arbitrary values of the Deborah number. Such an approach allows us to elucidate elastic stress contributions governing the pressure drop variations and the effect of finite extensibility for all $De$. We validate our theoretical predictions with two-dimensional numerical simulations and find excellent agreement. We show that, at low Deborah numbers, the pressure drop of the FENE-CR fluid monotonically decreases with $De$, similar to the previous results for the Oldroyd-B and FENE-P fluids. However, at high Deborah numbers, in contrast to a linear decrease for the Oldroyd-B fluid, the pressure drop of the FENE-CR fluid exhibits a non-monotonic variation due to finite extensibility, first decreasing and then increasing with $De$. Nevertheless, even at sufficiently high Deborah numbers, the pressure drop of the FENE-CR fluid in the ultra-dilute and lubrication limits is lower than the corresponding Newtonian pressure drop.
Randomness is one of the most important characteristics of turbulence, but its origin remains an open question. By means of a ‘thought experiment’ via several clean numerical experiments based on the Navier–Stokes equations for two-dimensional turbulent Kolmogorov flow, we reveal a new phenomenon, which we call the ‘noise-expansion cascade’ whereby all micro-level noises/disturbances at different orders of magnitudes in the initial condition of Navier–Stokes equations enlarge consistently, say, one by one like an inverse cascade, to macro level. More importantly, each noise/disturbance input may greatly change the macro-level characteristics and statistics of the resulting turbulence, clearly indicating that micro-level noise/disturbance might have great influence on macro-level characteristics and statistics of turbulence. In addition, the noise-expansion cascade closely connects randomness of micro-level noise/disturbance and macro-level disorder of turbulence, thus revealing an origin of randomness of turbulence. This also highly suggests that unavoidable thermal fluctuations must be considered when simulating turbulence, even if such fluctuations are several orders of magnitudes smaller than other external environmental disturbances. We hope that the ‘noise-expansion cascade’, as a fundamental property of the Navier–Stokes equations, could greatly deepen our understandings about turbulence, and also be helpful for attacking the fourth millennium problem posed by the Clay Mathematics Institute in 2000.
This research explores a circularly polarized (CP) multiple-input-multiple-output (MIMO) dielectric resonator antenna (DRA) designed specifically for 5G Sub-6 GHz and WiMAX applications. The antenna system utilizes a unique H-shaped feeding strip to excite each DRA element. This specialized feeding mechanism facilitates the activation of higher-order degenerate modes, including TE$_{\delta13}^x$ and TE$_{1 \delta 3}^{y}$, which are essential for achieving circular polarization. The antenna exhibits a reflection coefficient of −37.52 dB at 3.49 GHz, covering the entire CP passband and operating over a broad bandwidth of 1.35 GHz (3.40–4.75 GHz) yielding a return loss of 35.52%, making it suitable for Sub-6 GHz applications. An axial ratio bandwidth of 24.6% (3.4–4.2 GHz) is observed, with inter-port isolation of greater than −25.3 dB throughout the usable frequency band with a maximum efficiency of approximately 98%, indicating near-lossless power radiation. Additionally, the estimated gain is 5.95 dBic. The proposed MIMO design presented effectively reduces the intersecting spatial field components between antenna elements, leading to a lower envelope correlation coefficient and enhanced inter-port isolation. This diversity gain of the proposed antenna is a strong candidate for use in rich multi-path environments, helping to mitigate the effects of channel fading.. Initially, the proposed antenna design was examined using the time-domain solver of CST, followed by the fabrication of a prototype for experimental validation. The antenna exhibits a stable response, making it well-suited for 5G Sub-6 GHz and WiMAX applications.There is a satisfactory alignment between the results obtained from simulations and those observed experimentally.
An optimal microswimmer with a given geometry has a surface velocity profile that minimises energy dissipation for a given swimming speed. An axisymmetric swimmer can be puller-, pusher- or neutral-type depending on the sign of the stresslet strength. We numerically investigate the type of optimal surface-driven active microswimmers using a minimum dissipation theorem for optimum microswimmers. We examine the hydrodynamic resistance and stresslet strength with nonlinear dependence on various deformation modes. Optimum microswimmers with fore-and-aft symmetry exhibit neutral-type behaviour. Asymmetrical geometries exhibit pusher-, puller- or neutral-type behaviour, depending on the dominant deformation mode and the nonlinear dependence of the stresslet for an optimum microswimmer on deformation mode and amplitude.
A rigorous analysis of the scattering of plane and cylindrical waves from a strip loaded single near zero and double near zero (DNZ) metamaterial cylindrical object is presented. The proposed problem has been solved using integral equations derived from Green’s theorem and usual tangential boundary conditions. During the analysis, it was found that by loading a strip onto the metamaterial cylindrical objects, one can enhance or diminish the scattering under some specified conditions. It is shown that an enhancement in the back scattering occurs for a strip loaded DNZ metamaterial cylinder as compared to the back scattering of an unloaded DNZ metamaterial cylinder for both types of incident polarization. In the case of a specifically located electric line source, it is argued that by loading a strip onto a DNZ metamaterial cylinder, one can reduce the magnitude of the total field significantly at specific observation azimuth angles. For a specific location of a magnetic line source, the magnitude of total field of a strip loaded mu near zero (MNZ) metamaterial can be significantly enhanced as compared to unloaded MNZ cylinder in the specific observation directions. This parametric investigation is helpful in the designing of cylindrical metamaterial-based devices.