Hostname: page-component-f554764f5-fr72s Total loading time: 0 Render date: 2025-04-16T07:48:52.222Z Has data issue: false hasContentIssue false

Tuning of cascade PID controller gains of quadcopter under bounded disturbances using metaheuristic based research algorithm

Published online by Cambridge University Press:  11 April 2025

E.H. Çopur*
Affiliation:
Department of Aerospace Engineering, Necmettin Erbakan University, Konya 42040, Türkiye
E. Balta
Affiliation:
Department of Aeronautical Engineering, Necmettin Erbakan University, Konya 42040, Türkiye
H.H. Bilgic
Affiliation:
Department of Aeronautical Engineering, Necmettin Erbakan University, Konya 42040, Türkiye
*
Corresponding author: E.H. Çopur; Email: [email protected]

Abstract

The proportional–integral–derivative (PID) controller remains widely used in industrial applications today due to its simplicity and ease of implementation. However, tuning the controller’s gains is crucial for achieving desired performance. This study compares the performance of PID controllers within a cascade control architecture designed for both position and attitude control of a quadcopter. Particle swarm optimisation (PSO), grey wolf optimisation (GWO), artificial bee colony (ABC), and differential evaluation (DE) methods are employed to optimally tune the PID parameters. A set of PID gains is determined offline by minimising various modified multi-objective functions based on different fitness measures: IAE, ISE, ITAE and ITSE. These measures are adapted as fitness functions for position and attitude control. A simulation study is conducted to determine which fitness function yields the optimal PID gains, as evidenced by the lowest values of the objective functions. In these simulations, two different desired trajectories are designed, and the controllers are applied to ensure the quadcopter tracks these trajectories accurately. Additionally, to test the robustness of the flight control architecture and the finely tuned PID controllers against various environmental effects and parametric uncertainties, several case scenarios are also explored.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Mardan, M., Esfandiari, M. and Sepehri, N. Attitude and position controller design and implementation for a quadrotor, Int. J. Adv. Robot. Syst., 2017, 14, (3). doi: 10.1177/1729881417709242 CrossRefGoogle Scholar
Saif, E. and Eminoğglu, İ. Modelling of quad-rotor dynamics and hardware-in-the-loop simulation, J. Eng., 2022, 2022, (10), pp 937950. doi: 10.1049/tje2.12152 Google Scholar
Zainuddin, K, Ghazali, N. and Mat Arof, Z. The feasibility of using low-cost commercial unmanned aerial vehicle for small area topographic mapping, in 2015 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), IEEE, Bali, Indonesia, 2015. doi: 10.1109/icares.2015.7429825 CrossRefGoogle Scholar
Xuan-Mung, N. and Hong, S.-K. Improved altitude control algorithm for quadcopter unmanned aerial vehicles, App. Sci., 2019, 9, (10), p 2122. doi: 10.3390/app9102122 CrossRefGoogle Scholar
Ju, C., Kim, J., Seol, J. and Il Son, H. A review on multirobot systems in agriculture, Comput. Electron. Agric., 2022, 202, p 107336. doi: 10.1016/j.compag.2022.107336 CrossRefGoogle Scholar
Mian, A.A. and Daobo, W. Modeling and backstepping-based nonlinear control strategy for a 6 DOF quadrotor helicopter, Chin. J. Aeronaut., 2008, 21, (3), pp 261268. doi: 10.1016/s1000-9361(08)60034-5 CrossRefGoogle Scholar
Razmi, H. and Afshinfar, S. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV, Aerosp. Sci. Technol., 2019, 91, pp 1227. doi: 10.1016/j.ast.2019.04.055 CrossRefGoogle Scholar
Kamal Hosseini Sani, S. and Kakavand, E. Online sliding mode-based integrated guidance and control system for a quadcopter UAV in the presence of unknown obstacles, Iran. J. Sci. Technol. Trans. Electric. Eng., 2022, (1), pp 193201. doi: 10.1007/s40998-022-00537-x Google Scholar
Zhu, X.-Z., Cabecinhas, D., Xie, W., Casau, P., Silvestre, C., Batista, P. and Oliveira, P. Kalman–Bucy filter-based tracking controller design and experimental validations for a quadcopter with parametric uncertainties and disturbances, Int. J. Syst. Sci., 2022, pp 125. doi: 10.1080/00207721.2022.2096939 Google Scholar
Ataka, A., Tnunay, H., Inovan, R., Abdurrohman, M., Preastianto, H., Cahyadi, A.I. and Yamamoto, Y. Controllability and observability analysis of the gain scheduling based linearization for UAV quadrotor, in 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems, IEEE, Jogjakarta, Indonesia, 2013, pp 212218. doi: 10.1109/robionetics.2013.6743606 CrossRefGoogle Scholar
Ahmad, F., Kumar, P., Bhandari, A. and Patil, P.P. Simulation of the quadcopter dynamics with LQR based control, Mater. Today: Proc., 2020, 24, pp 326332. doi: 10.1016/j.matpr.2020.04.282 Google Scholar
Alexandrov, V., Rezkov, I., Shatov, D. and Chestnov, V. Discrete-time ${\mathrm{H}}\_\infty $H∞ optimization for quadcopter altitude control, in 2021 29th Mediterranean Conference on Control and Automation (MED), IEEE, Puglia, Italy, 2021, pp 126131. doi: 10.1109/med51440.2021.9480354 CrossRefGoogle Scholar
Bhatia, A.K., Jiang, J., Zhen, Z., Ahmed, N. and Rohra, A. Projection modification based robust adaptive backstepping control for multipurpose quadcopter UAV, IEEE Access, 2019, 7, 154121154130. doi: 10.1109/access.2019.2946416 CrossRefGoogle Scholar
Martins, L., Cardeira, C. and Oliveira, P. Feedback linearization with zero dynamics stabilization for quadrotor control, J. Intell. Robot. Syst., 2020, 101, (1). doi: 10.1007/s10846-020-01265-2 Google Scholar
Ullah, S., Mehmood, A., Khan, Q., Rehman, S. and Iqbal, J. Robust integral sliding mode control design for stability enhancement of under-actuated quadcopter, Int. J. Control, Automat. Syst., 2020, 18, (7), pp 16711678. doi: 10.1007/s12555-019-0302-3 CrossRefGoogle Scholar
Kimura, T., Hoshino, K., Asano, Y., Honda, A., Motooka, N. and Ohtsuka, T. Application of nonlinear model predictive control to quadcopter equipped with internal control system, in 2022 SICE International Symposium on Control Systems (SICE ISCS), IEEE, Yokohama, Japan, 2022, pp 5157. doi: 10.23919/SICEISCS54350.2022.9754519 CrossRefGoogle Scholar
Farber, B.E. and Richards, C.M. Adaptive control and parameter-dependent anti-windup compensation for inertia-varying quadcopters, Int. J. Control, 2022, pp 114. doi: 10.1080/00207179.2022.2138555 Google Scholar
Roy, R., Islam, M., Sadman, N., Mahmud, M.P., Gupta, K.D. and Ahsan, M. A review on comparative remarks, performance evaluation and improvement strategies of quadrotor controllers, Technologies, 2021, 9, (2), p 37. doi: 10.3390/technologies9020037 CrossRefGoogle Scholar
Jiang, F., Pourpanah, F. and Hao, Q. Design, implementation, and evaluation of a neural-network-based quadcopter UAV system, IEEE Trans. Ind. Electron., 2020, 67, (3), pp 20762085. doi: 10.1109/tie.2019.2905808 CrossRefGoogle Scholar
Canbek, K.O. and Oniz, Y. Real-time implementation of an interval type-2 fuzzy logic controller for the trajectory tracking of an UAV, in 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), IEEE, Ankara, Turkey, 2021, pp 418423. doi: 10.1109/ISMSIT52890.2021.9604539 CrossRefGoogle Scholar
Guzay, C. and Kumbasar, T. Aggressive maneuvering of a quadcopter via differential flatness-based fuzzy controllers: from tuning to experiments, Appl. Soft Comput., 2022, 126, p 109223. doi: 10.1016/j.asoc.2022.109223 CrossRefGoogle Scholar
Jiao, Q., Liu, J., Zhang, Y. and Lian, W. Analysis and design the controller for quadrotors based on pid control method, in 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), IEEE, Nanjing, China, 2018, pp 8892. doi: 10.1109/YAC.2018.8406352 CrossRefGoogle Scholar
Behrooz, F., Mariun, N., Marhaban, M., Radzi, M.M., and Ramli, A. Review of control techniques for HVAC systems—nonlinearity approaches based on fuzzy cognitive maps, Energies, 2018, 11, (3), p 495. doi: 10.3390/en11030495 CrossRefGoogle Scholar
Idrissi, M, Salami, M. and Annaz, F. Modelling, simulation and control of a novel structure varying quadrotor, Aerosp. Sci. Technol., 2021, 119, p 107093. doi: 10.1016/j.ast.2021.107093 CrossRefGoogle Scholar
Wang, Q.-G., Lee, T.-H., Fung, H.-W., Bi, Q. and Zhang, Y. PID tuning for improved performance, IEEE Trans. Control Syst. Technol., 1999, 7, (4), pp 457465. doi: 10.1109/87.772161 CrossRefGoogle Scholar
Ziegler, J.G. and Nichols, N.B. Optimum settings for automatic controllers, J. Dyn. Syst. Meas. Control, 1993, 115, (2B), pp 220222. doi: 10.1115/1.2899060 CrossRefGoogle Scholar
Cohen, G.H. and Coon, G.A. Theoretical consideration of retarded control, J Fluids Eng., 1953, 75, (5), pp 827834. doi: 10.1115/1.4015451 Google Scholar
Yazid, E., Garrat, M. and Santoso, F. Optimal PD tracking control of a quadcopter drone using adaptive PSO algorithm, in 2018 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), IEEE, Tangerang, Indonesia, 2018, pp 146151. doi: 10.1109/IC3INA.2018.8629504 CrossRefGoogle Scholar
Parfiryev, A.V., Ischuk, I.N., Dushkin, A.V., and Smolyakova, S.D. Algorithm for controlling the trajectory of an unmanned aerial vehicle with the possibility of flying around obstacles, in 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), IEEE, St. Petersburg and Moscow, Russia, 2020, pp 23952400. doi: 10.1109/EIConRus49466.2020.9039467 CrossRefGoogle Scholar
Sarbass, H., Tatli, A. and Onrat, A. Control of unmanned aerial vehicles using self tuning fuzzy PID, in 2018 26th Signal Processing and Communications Applications Conference (SIU), IEEE, Izmir, Turkey, 2018, pp 14. doi: 10.1109/SIU.2018.8404778 CrossRefGoogle Scholar
Khodja, M.A., Tadjine, M., Boucherit, M.S. and Benzaoui, M. Experimental dynamics identification and control of a quadcopter, in 2017 6th International Conference on Systems and Control (ICSC), IEEE, Batna, Algeria, 2017, pp 498502. doi: 10.1109/ICoSC.2017.7958668 CrossRefGoogle Scholar
Artale, V., Milazzo, C.L.R., Orlando, C. and Ricciardello, A. Comparison of GA and PSO approaches for the direct and LQR tuning of a multirotor PD controller, J. Ind. Manag. Opt., 2017, 13, (4), pp 20672091. doi: 10.3934/jimo.2017032 CrossRefGoogle Scholar
Can, M.S. and Ercan, H. Real-time tuning of PID controller based on optimization algorithms for a quadrotor, Aircr. Eng. Aerosp. Technol., 2021, 94, (3), pp 418430. doi: 10.1108/aeat-06-2021-0173 CrossRefGoogle Scholar
Hasseni, S.-E.-I., Abdou, L. and Glida, H.-E. Parameters tuning of a quadrotor PID controllers by using nature-inspired algorithms, Evol. Intell., 2019, 14, (1), pp 6173. doi: 10.1007/s12065-019-00312-8 CrossRefGoogle Scholar
Saribas, H. and Kahvecioglu, S. PSO and GA tuned conventional and fractional order PID controllers for quadrotor control, Aircr. Eng. Aerosp. Technol., 2021, 93, (7), pp 12431253. doi: 10.1108/aeat-08-2020-0185 CrossRefGoogle Scholar
Kayacan, E. and Maslim, R. Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions, IEEE/ASME Trans. Mechatron., 2017, 22, (1), 339348. doi: 10.1109/tmech.2016.2614672 CrossRefGoogle Scholar
Oh, S-K., Jang, H.-J. and Pedrycz, W. Optimized fuzzy PD cascade controller: a comparative analysis and design, Simul. Model. Pract. Theory, 2011, 19, (1), pp 181195. doi: 10.1016/j.simpat.2010.06.004 CrossRefGoogle Scholar
Raja, G.L. and Ali, A. Series cascade control: an outline survey, in 2017 Indian Control Conference (ICC), 2017, IEEE, Guwahati, India, pp 409414. doi: 10.1109/indiancc.2017.7846509 CrossRefGoogle Scholar
Soares, D.M., Calil, H.A.M. and Stephan, R.M. Cascade control vs full-state feedback, in 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), 2019, IEEE, Santos, Brazil. doi: 10.1109/cobep/spec44138.2019.9065696 CrossRefGoogle Scholar
Eberhart, R. and Kennedy, J. A new optimizer using particle swarm theory, in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, Nagoya, Japan, 1995, pp 3943. doi: 10.1109/MHS.1995.494215 CrossRefGoogle Scholar
Shi, Y. and Eberhart, R. A modified particle swarm optimizer, in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), IEEE, Anchorage, AK, USA, 1998, pp 6973. doi: 10.1109/ICEC.1998.699146 CrossRefGoogle Scholar
Storn, R. and Price, K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Global Opt., 1997, 11, (4), pp 341359. ISSN 1573-2916. doi: 10.1023/A:1008202821328 CrossRefGoogle Scholar
Karaboga, D. An idea based on honey bee swarm for numerical optimization, Technical report, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.Google Scholar
Mirjalili, S., Mirjalili, S.M. and Lewis, A. Grey wolf optimizer, Adv. Eng. Softw., 2014, 69, pp 4661. doi: 10.1016/j.advengsoft.2013.12.007 CrossRefGoogle Scholar
Cheeseman, I.C. and Bennett, W.E. The effect of ground on a helicopterrotor in forward flight, Techreport RM No. 3021, Aeronautical Research Council Reports and Memoranda, London, UK, 1955.Google Scholar
Danjun, L., Yan, Z., Zongying, S. and Geng, L. Autonomous landing of quadrotor based on ground effect modelling, in 2015 34th Chinese Control Conference (CCC), IEEE, 2015. doi: 10.1109/chicc.2015.7260521 CrossRefGoogle Scholar
Hayden, J.S. The effect of the ground on helicopter hovering power required, in American Helicopter Society 32nd Annual National V/STOL Forum, Washington, DC, USA, 1976.Google Scholar
Sanchez-Cuevas, P., Heredia, G. and Ollero, A. Characterization of the aerodynamic ground effect and its influence in multirotor control, Int. J. Aerosp. Eng., 2017, 2017, pp 117. ISSN 1687-5974. doi: 10.1155/2017/1823056 CrossRefGoogle Scholar
Wei, P., Chan, S.N., Lee, S. and Kong, Z. Mitigating ground effect on mini quadcopters with model reference adaptive control, Int. J. Intell. Robot. Appl., 2019, 3, (3), pp 283297. ISSN 2366-598X. doi: 10.1007/s41315-019-00098-z CrossRefGoogle Scholar
Thanh, H.L.N.N. and Hong, S.K. Quadcopter robust adaptive second order sliding mode control based on PID sliding surface, IEEE Access, 2018, 6, pp 6685066860. ISSN 2169-3536. doi: 10.1109/access.2018.2877795 CrossRefGoogle Scholar