We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathrm{Mod}(S_g)$ be the mapping class group of the closed orientable surface of genus $g \geq 1$, and let $\mathrm{LMod}_{p}(X)$ be the liftable mapping class group associated with a finite-sheeted branched cover $p:S \to X$, where X is a hyperbolic surface. For $k \geq 2$, let $p_k: S_{k(g-1)+1} \to S_g$ be the standard k-sheeted regular cyclic cover. In this paper, we show that $\{\mathrm{LMod}_{p_k}(S_g)\}_{k \geq 2}$ forms an infinite family of self-normalising subgroups in $\mathrm{Mod}(S_g)$, which are also maximal when k is prime. Furthermore, we derive explicit finite generating sets for $\mathrm{LMod}_{p_k}(S_g)$ for $g \geq 3$ and $k \geq 2$, and $\mathrm{LMod}_{p_2}(S_2)$. For $g \geq 2$, as an application of our main result, we also derive a generating set for $\mathrm{LMod}_{p_2}(S_g) \cap C_{\mathrm{Mod}(S_g)}(\iota)$, where $C_{\mathrm{Mod}(S_g)}(\iota)$ is the centraliser of the hyperelliptic involution $\iota \in \mathrm{Mod}(S_g)$. Let $\mathcal{L}$ be the infinite ladder surface, and let $q_g : \mathcal{L} \to S_g$ be the standard infinite-sheeted cover induced by $\langle h^{g-1} \rangle$ where h is the standard handle shift on $\mathcal{L}$. As a final application, we derive a finite generating set for $\mathrm{LMod}_{q_g}(S_g)$ for $g \geq 3$.
The failed 2020 revolution in Belarus and Russia’s full-scale invasion of Ukraine in 2022 served as catalysts for the creation of the Insulted. Belarus Worldwide Readings Project based on a play by Andrei Kureichik. The project provided the material for hundreds of performances in over 30 countries, while dozens of texts by members of Kyiv’s Theatre of Playwrights formed the core of the Worldwide Ukrainian Play Readings, a similar project that generated over 660 performances, refuting Russian president Vladimir Putin’s claim that Ukrainian culture does not exist.