We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tremor, which is defined as an oscillatory and rhythmic movement of a body part, is the most common movement disorder worldwide. The most frequent tremor syndromes are tremor in Parkinson’s disease, essential tremor, and dystonic tremor syndromes, whereas Holmes tremor, orthostatic tremor, and palatal tremor are less common in clinical practice. The pathophysiology of tremor consists of enhanced oscillatory activity in brain circuits, which are ofen modulated by tremor-related afferent signals from the periphery. The cerebello-thalamo-cortical circuit and the basal ganglia play a key role in most neurologic tremor disorders, but with different roles in each disorder. Here we review the pathophysiology of tremor, focusing both on neuronal mechanisms that promote oscillations (automaticity and synchrony) and circuit-level mechanisms that drive and maintain pathologic oscillations.
Clinical evaluation of motor dysfunction is crucial to make a correct diagnosis. The gold standard is clinical evaluation by a movement disorder specialist, relying on subjective measures and patient report. Regular clinical assessments are needed to provide long-term measures that monitor motor progression over time and therapy response, not only in clinical settings but also during daily activities at home. Wearable sensors have been developed to assess objective and quantifiable measures of motor dysfunction. Such sensors are small, light, cheap and portable, containing built-in accelerometers and gyroscopes and data storage. These new technologies are revolutionizing the field of movement disorders to improve clinical diagnosis and evaluation, treatment monitoring at home, and progression of symptoms over time. They are also of interest for adaptive therapy options, e.g. closed-loop deep brain stimulation, and are successful in quantifying and measuring tremor, showing promise in assessing bradykinesia, dyskinesia, gait impairments and prediction of therapy response. Despite device development, there is no validated clinical application yet; further research is needed.
This chapter summarizes the functional–anatomic organization of the connectivity of the basal ganglia with the thalamocortical systems and the brainstem. This connectional organization substantiates the neural basis for the wide array of functions in which the basal ganglia are involved, ranging from pure sensorimotor to cognitive–executive and emotional–motivational behaviors. Across this broad array of motor and behavioral functions, the mechanism by which the basal ganglia contribute to these functions is through “response selection.” This mechanism fits well with the arrangement of the intrinsic connections between the individual basal ganglia nuclei, supporting the selection of appropriate responses in a particular context and, at the same time, the suppression of inadequate responses. A variety of symptoms as part of neurologic movement disorders, such as Parkinson’s disease, Huntington’s disease and dystonia, or neuropsychiatric diseases like obsessive-compulsive disorder, mood disorders, and drug addiction, might be interpreted as an inadequate selection of motor, cognitive, or affective responses to internal or external stimuli.
Although movement is largely generated from the primary motor cortex, what movement to make and how to make it is influenced from the entire brain. External influences from the environment come from sensory systems in the posterior part of the brain, and internal influences, such as homeostatic drive and reward, from the anterior part. A movement is voluntary when a person’s consciousness recognizes it to be so because of proper activation of the agency network. Behavioral movement disorders can be understood as dysfunction of these mechanisms. Apraxia and task specific dystonia arise from disruption of parietal–premotor connections. Tics arise from a hyperactive limbic system. Functional movement disorders may also have an origin in abnormal limbic function and are believed to be involuntary due to dysfunction of the agency network. In Parkinson’s disease, bradykinesia comes from insufficient basal ganglia support to the anterior part of the brain.
Physical rehabilitation in people with Parkinson’s disease (PD) aims to restore everyday functioning and mobility through a multidisciplinary approach. We present and discuss the current evidence on efficacy of key rehabilitation specialties and therapies that contribute to improving everyday (motor and non-motor) functioning in PD. Rehabilitative therapies aiming to improve posture and balance, transfers, gait, and physical condition have been shown effective. Evidence that physical therapy interventions using for example external or internal cues is effective for improving gait and gait-related mobility is strong, although the evidence for improving upper limb function, speech, and swallowing deficits is still limited. Optimal intensity of rehabilitation services offered by physical therapists, occupational therapists, and speech therapists, as well as their active ingredients and long-term impact, need further underpinning to help continuing development and updating of clinical guidelines.
Parkinson’s disease (PD), a typical Parkinson syndrome, is seen as a progressive multisystem neurodegenerative disease with α-synuclein–containing Lewy bodies and neurites, affecting 1–2 per 1000 of the global population. The prevailing view of PD etiology is that it is the result of cell-autonomous and non-autonomous processes, starting in the olfactory nerve and the autonomous nervous system of the gut, spreading retrogradely through synaptically coupled networks in a topographically predictable sequence to postsynaptic brainstem neurons, affecting the nuclear grays of the basal midbrain and forebrain and finally the neocortex. Cell-autonomous processes (e.g., mitochondrial damage and a defective autophagy by lysosomal and ubiquitin proteasome systems) result in pathologic accumulation of intracellular α-synuclein oligomers and aggregates. Non–cell-autonomous processes comprise the spread of synucleinic pathology in dying neurons to neighboring dopaminergic, cholinergic, serotinergic, and adrenergic neurons and/or to astrocytes, microglia, and lymphocytes across brain regions, plus decreased brain-derived neurotrophic factors and/or microglial-induced inflammatory responses.
In Parkinson’s disease, parkinsonism occurs due to the loss of dopaminergic neurons of the substantia nigra. Existing treatments can enhance dopaminergic activity in the brain, but cause adverse effects due to the non-targeted, non-physiologic dopamine delivery, so there is interest in developing regenerative therapies to restore dopaminergic tone in the striatum in a targeted, physiologic manner. Experimental approaches include using viral vectors to deliver genes encoding growth factors or enzymes involved in dopamine synthesis, or to target nucleic acids and gene expression. A number of cell types have been considered potential sources of cell-based therapies for PD and have been trialled in humans and animals, but all have been limited by either poor efficacy, poor graft survival, or logistical barriers. However, stem cells offer a renewable source of dopaminergic cells and hold great promise as potential regenerative treatments, and human trials have begun. Although these treatments remain experimental, some are entering clinical trials and there is hope that they will become available for clinical use in the future.
The exact mechanisms underlying dysfunction of the basal ganglia that lead to Parkinson’s disease (PD) remain unclear. According to the standard model of PD, motor symptoms result from abnormal neuronal activity in dysfunctional basal ganglia, which can be recorded in human basal ganglia structures as functional neurosurgery for PD provides a unique opportunity to record from these regions. Microelectrode and local field potential recordings studies show alterations exist in basal ganglia nuclei as well as in the motor thalamus. Lesioning or stimulation of the basal ganglia results in significant improvement of PD symptoms, supporting the view that basal ganglia–thalamocortical circuits abnormality is important in parkinsonism generation. Different patterns of oscillatory neuronal activity plus changes in firing rate are associated with different parkinsonian motor subtypes. We present recordings of basal ganglia activity obtained with microelectrode recordings in parkinsonian patients, providing pathophysiology insight.
People with Parkinson’s disease (PD) often suffer from various non-motor symptoms, including manifestations of autonomic dysfunction. The latter encompass cardiovascular, urogenital, gastrointestinal manifestations, sexual dysfunction and thermoregulatory disturbances. Autonomic manifestations can be an intrinsic aspect of PD, resulting from degeneration of parasympathetic and sympathetic pathways, or can be secondary to comorbidity or medication intake. As autonomic dysfunction is prevalent and often troublesome, identification and appropriate treatment are relevant steps in the management of people with Parkinson’s disease. Some manifestations of this autonomic dysfunction may precede the onset of PD motor features by many years, and might be considered biomarkers of this disease. A variety of non-pharmacologic and pharmacologic treatments have been investigated for the treatment of autonomic dysfunction in PD, but a limited evidence base is available so far.
The clinical and pathologic hallmarks of Parkinson’s disease (PD) are motor parkinsonism due to underlying progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta accompanied by an accumulation of intracytoplasmic protein inclusions known as Lewy bodies and Lewy neurites. The diagnostic criteria/guidelines based on the UK Parkinson’s Disease Society Brain Bank clinical diagnostic criteria have guided clinicians and researchers in the diagnosis of PD for many decades. This chapter discusses whether this description represents our current understanding of PD, and why it is time to integrate new research findings and accommodate our definition and diagnostic criteria of PD, such as Parkinson-associated non-motor symptoms, genetics, biomarkers, imaging findings, or heterogeneity of phenotypes and underlying molecular mechanisms. In 2015, the International Parkinson and Movement Disorder Society published clinical diagnostic criteria for Parkinson’s disease, which were designed specifically for use in research but also as a general guide to clinical diagnosis of PD. These criteria and some of their limitations are also discussed.
Many drugs are available to treat Parkinson’s disease (PD), but are limited to alleviating symptoms; no disease-modifying treatment (DMT) has been approved by any authority. There is much effort to develop remedies capable of altering the underlying neurodegenerative processes in PD. Current concepts target the deposition of pathologic α-synuclein oligomers either by immunization strategies or by small molecules that interact with the protein aggregation. Further DMT approaches modulate pathologically active intracellular processes such as the c-Abl kinase or LRRK2 pathway or aim to activate signaling pathways involved in neuroprotection, such as the GLP-1 receptor pathway (with GLP1-agonist exenatide being the most advanced DMT in the PD drug pipeline). Replacement of enzymes such as β-glucocerebrosidase, modification of the microbiome, or targeting energy metabolism or inflammation are further approaches proposed to slow down neurodegeneration. Novel symptomatic treatment approaches envisage improvement of pharmacologic properties of levodopa or dopamine agonists or target non-dopaminergic neurotransmitter systems, e.g., the glutamatergic, serotoninergic or cholinergic system.
Parkinson’s disease (PD) is characterized by the inability of dopamine production from amino acids. Therefore, changes in amino acid profile in PD patients are very critical for understanding disease development. Determination of amino acid levels in PD patients with a cumulative approach may enlighten the disease pathophysiology.
Methods:
A systematic search was performed until February 2023, resulting in 733 articles in PubMed, Web of Science and Scopus databases to evaluate the serum amino acid profile of PD patients. Relevant articles in English with mean/standard deviation values of serum amino acid levels of patients and their healthy controls were included in the meta-analysis.
Results:
Our results suggest that valine, proline, ornithine and homocysteine levels were increased, while aspartate, citrulline, lysine and serine levels were significantly decreased in PD patients compared to healthy controls. Homocysteine showed positive correlations with glutamate and ornithine levels. We also analyzed the disease stage parameters: Unified Parkinson’s Disease Rating Scale III (UPDRS III) score, Hoehn–Yahr Stage Score, disease duration and levodopa equivalent daily dose (LEDD) of patients. It was observed that LEDD has a negative correlation with arginine levels in patients. UPDRS III score is negatively correlated with phenylalanine levels, and it also tends to show a negative correlation with tyrosine levels. Disease duration tends to be negatively correlated with citrulline levels in PD patients.
Conclusion:
This cumulative analysis shows evidence of the relation between the mechanisms underlying amino acid metabolism in PD, which may have a great impact on disease development and new therapeutic strategies.
Parkinson’s disease (PD) chronic L-Dopa treatment often triggers motor complications, such as L-Dopa-induced dyskinesias (LID). LID are reported to be associated with abnormal glutamatergic activity between the striatum and primary motor cortex (M1), resulting in M1 hyperactivation. Beneficial noninvasive brain stimulation (NIBS) paradigms were reported to normalize glutamatergic activity. The objective of the present study was thus to set up a NIBS paradigm in parkinsonian monkeys to investigate motor behavior under basal conditions and with L-Dopa treatment-inducing dyskinesias.
Methods:
Motor behavior was investigated in five 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dyskinetic female Macaca fascicularis monkey models of PD, allowing us to monitor the administration of NIBS and drugs. NIBS used were inhibitory protocols, that is, cathodal transcranial direct current stimulation (c-tDCS) and continuous theta-burst stimulation (cTBS). A procedure of three weeks was developed to progressively acclimate animals to the experimental conditions, equipment and noise of c-tDCS and cTBS before stimulating them with either vehicle or L-Dopa.
Results:
One session of c-tDCS with L-Dopa yielded no effect, whereas five sessions briefly reduced LID but decreased the duration of L-Dopa anti-PD effects. cTBS alone improved (decreased) parkinsonian scores as compared to sham stimulation or vehicle alone. Two sessions of cTBS with L-Dopa decreased LID without affecting L-Dopa anti-PD effects.
Conclusion:
This is the first study testing c-tDCS and cTBS on the motor behavior of MPTP dyskinetic monkeys. As compared to medicated patients, MPTP monkeys offer the opportunity to evaluate NIBS after-effects in drug-free and LID conditions, which are critical in the search for new PD treatment.
Emerging evidence has shown a strong correlation between serum triacylglycerol (TAG) levels, the inflammatory response, and Parkinson’s disease (PD) onset. However, the causal relationship between TAG levels and PD has not been well-established. We aimed to investigate the relationship between serum TAG levels and risk of PD and explore the potential mediating role of circulating immune cells and inflammatory proteins. We utilised genotype data from the GeneRISK cohort, and summary data from genome wide association studies investigating PD, circulating immune cells, inflammatory proteins, and plasma lipidomes. Using Mendelian randomization (MR) and multivariate MR (MVMR) analysis, we further adjusted for phosphatidylcholine (17:0_18:1) and triacylglycerol (58:7). Our results suggested a robust causal link between higher serum TAG (51:4) levels and a decreased risk of PD, with one standard deviation genetically instrumented higher serum TAG (51:4) level leading to a 21 percent [95% CI, 0.66 – 0.96] reduction in the risk of PD (p = 0.015). Additionally, the results of the mediation analysis suggested a possible role for mediation through circulating immune cells (including IgD-CD38-B cells and resting CD4 regulatory T cells), but not circulating inflammatory proteins, in the causal relationship between the plasma lipidomes and PD. Our study confirms a causal relationship between higher serum TAG (51:4) levels and a lower risk of PD and clarifies a possible role for mediation through circulating immune cells, but not inflammatory proteins. These findings indicate that serum triacylglycerol (51:4) regulates immunity to effectively lower the risk of PD.
Over the last decade, we have gained a better understanding of impulse control disorder in Parkinson’s disease (PD-ICD), a medication complication in PD. Researchers were aware of its complexity and took efforts to learn more about its diagnostic and treatment possibilities. Nevertheless, clinical management for it is currently neglected. We conducted a narrative overview of literature published from 2012 to October 2023 on various aspects of clinical management for PD-ICD. A potential “susceptibility-catalytic-stress” model in the development of PD-ICD was proposed and a profile encoding predictors for PD-ICD was created. Based on these predictors, some methods for prediction were recently developed for better prediction, such as the polymorphic dopamine genetic risk score and the clinic-genetic ICD-risk score. A variety of treatment options, including dose reduction of dopamine receptor agonists (DAs), DAs removal, DAs switch, and add-on therapy, are investigated with inconsistent reports. Based on current findings, we developed a clinical management model prototype centered on prevention, consisting of prediction, prevention, follow-up and monitoring, therapy, and recurrence prevention, for clinical reference, and further proposed 4 key clinical management principles, including standardization, prediction centered, persistence, and whole course.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor outcomes in Parkinson’s disease (PD) but may have adverse long-term effects on specific cognitive domains. The aim of this study was to investigate the association between total electrical energy (TEED) delivered by DBS and postoperative changes in verbal fluency.
Methods
Seventeen PD patients undergoing bilateral STN-DBS were assessed with the Alternate Verbal Fluency Battery (AVFB), which includes phonemic (PVF), semantic (SVF), and alternate verbal fluency (AVF) tests, before surgery (T0) and after 6 (T1) and 12 months (T2). Bilateral TEED and average TEEDM were recorded at T1 and T2. For each AVFB measurement, changes from T0 to T1 (Δ-01) and from T0 to T2 (Δ-02) were calculated.
Results
At T1, PVF (p = 0.007) and SVF scores (p = 0.003) decreased significantly. TEED measures at T1 and T2 were unrelated to Δ-01 and Δ-02 scores, respectively. However, an inverse, marginally significant association was detected between the TEEDM and Δ-01 scores for the AVF (p = 0.041, against an αadjusted = 0.025).
Conclusions
In conclusion, the present reports provide preliminary evidence that TEED may not be responsible or only slightly responsible for the decline in VF performance after STN-DBS in PD.
In a prospective, remote natural history study of 277 individuals with (60) and genetically at risk for (217) Parkinson’s disease (PD), we examined interest in the return of individual research results (IRRs) and compared characteristics of those who opted for versus against the return of IRRs. Most (n = 180, 65%) requested sharing of IRRs with either a primary care provider, neurologist, or themselves. Among individuals without PD, those who requested sharing of IRRs with a clinician reported more motor symptoms than those who did not request any sharing (mean (SD) 2.2 (4.0) versus 0.7 (1.5)). Participant interest in the return of IRRs is strong.
Epilepsy is one of the most common neurological disorders, affecting people of all ages. This chapter focusses on what has been learnt about the microRNA system in this important disease. Starting with an overview of epilepsy, it addresses what causes seizures to occur and some of the underlying mechanisms, including gene mutations and brain injuries. It explores how and which microRNAs drive complex gene changes that underpin but also oppose the enduring hyperexcitability of the epileptic brain. This includes by regulating amounts of neurotransmitter receptors, structural components of synapses, metabolic processes and inflammation. It also covers some of the earliest studies linking microRNAs to epilepsy as well as recent large-scale efforts to map every microRNA and its target in the epileptic brain. Finally, it highlights ways to model epilepsies and use of experimental tools such as antisense oligonucleotides to understand the contributions of individual microRNAs. Collectively, these studies reveal how microRNAs contribute to the molecular landscape that underlies this disease and offer the exciting possibility of targeting microRNAs to treat genetic and acquired epilepsies.
This systematic review primarily aims to identify the optimal physiotherapeutic intervention to improve hand dexterity in Parkinson’s Disease (PD) patients. The secondary objectives were to identify the hand dexterity physiotherapeutic interventions available for PD patients, and to determine the quality of these interventions.
Review Methods:
Eight electronic databases were systematically searched to identify relevant randomized controlled trial full-text articles using the established search strategy. The primary outcomes of interest were measurements for hand dexterity and activities of daily living (ADL).
Results:
A total of 11 studies comprising 647 participants with PD were included. Most studies had a high risk of performance bias and an unclear risk of selection bias. The intervention training period ranged from a single session to 12 weeks. Compared to their respective control group, eight out of 11 studies revealed significant results in hand dexterity, two out of three studies reported positive effects on ADL, four of seven studies showed significant improvements in upper limb motor performance, and two studies perceived positive benefits in terms of overall quality of life. Five out of 11 studies that recorded the occurrence of adverse events reported no adverse events post-intervention.
Conclusion:
The dearth of evidence made it difficult to support any one intervention as the best intervention when compared to the other PD treatments in upper limb rehabilitation. Regardless, a home-based dexterity rehabilitation programme is still a promising approach to enhance dexterity-related functional abilities.
The rising burden of neurological disorders poses significant challenges to healthcare systems worldwide. There has been an increasing momentum to apply integrated approaches to the management of several chronic illnesses in order to address systemic healthcare challenges and improve the quality of care for patients. The aim of this paper is to provide a narrative review of the current landscape of integrated care in neurology. We identified a growing body of research from countries around the world applying a variety of integrated care models to the treatment of common neurological conditions. Based on our findings, we discuss opportunities for further study in this area. Finally, we discuss the future of integrated care in Canada, including unique geographic, historical, and economic considerations, and the role that integrated care may play in addressing challenges we face in our current healthcare system.