Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T18:34:19.820Z Has data issue: false hasContentIssue false

Chapter 2 - The Basal Ganglia

from Section 1: - Basic Introduction

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

This chapter summarizes the functional–anatomic organization of the connectivity of the basal ganglia with the thalamocortical systems and the brainstem. This connectional organization substantiates the neural basis for the wide array of functions in which the basal ganglia are involved, ranging from pure sensorimotor to cognitive–executive and emotional–motivational behaviors. Across this broad array of motor and behavioral functions, the mechanism by which the basal ganglia contribute to these functions is through “response selection.” This mechanism fits well with the arrangement of the intrinsic connections between the individual basal ganglia nuclei, supporting the selection of appropriate responses in a particular context and, at the same time, the suppression of inadequate responses. A variety of symptoms as part of neurologic movement disorders, such as Parkinson’s disease, Huntington’s disease and dystonia, or neuropsychiatric diseases like obsessive-compulsive disorder, mood disorders, and drug addiction, might be interpreted as an inadequate selection of motor, cognitive, or affective responses to internal or external stimuli.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nieuwenhuys, R, Voogd, J, Van Huijzen, Ch. The Human Central Nervous System. A Synopis and Atlas. 4th revised ed. Heidelberg: Springer Verlag; 2008.CrossRefGoogle Scholar
Sakamoto, N, Pearson, J, Shinoda, K, et al. The human basal forebrain. Part I. In: Bloom, FE, Björklund, A, Hökfelt, T, eds. Handbook of Chemical Neuroanatomy, Vol. 15. The Primate Nervous System. Part III. Amsterdam: Elsevier; 1999: 155.Google Scholar
Heimer, L, de Olmos, JS, Alheid, GF, et al. The human basal forebrain. Part II. In: Bloom, FE, Björklund, A, Hökfelt, T, eds. Handbook of Chemical Neuroanatomy, Vol. 15. The Primate Nervous System. Part III. Amsterdam: Elsevier; 1999: 57226.CrossRefGoogle Scholar
Heimer, L, Harlan, RE, Alheid, GF, Garcia, MM, de Olmos, J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 1997;76:9571006.CrossRefGoogle ScholarPubMed
Parent, A, Cote, PY, Lavoie, B. Chemical anatomy of primate basal ganglia. Prog Neurobiol 1995;46:131197.CrossRefGoogle ScholarPubMed
Parent, A, Hazrati, L-N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia–thalamo-cortical loop. Brain Res Rev 1995;20:91127.CrossRefGoogle ScholarPubMed
Wise, SP, Murray, EA, Gerfen, CR. The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 1996;10:317356.CrossRefGoogle ScholarPubMed
Gerfen, CR, Bolam, JP. The neuroanatomical organization of the basal ganglia. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 332.Google Scholar
Haynes, WIA, Haber, SN. The organization of prefrontal–subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci 2013;33:48044814.CrossRefGoogle ScholarPubMed
Bevan, M. The subthalamic nucleus. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 277291.Google Scholar
Haber, SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 2014;282:248–57.CrossRefGoogle ScholarPubMed
Smith, AD, Bolam, JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990;13:259265.CrossRefGoogle Scholar
Tepper, JM, Koos, T, Wilson, CJ. GABAergic microcircuits in the neostriatum. Trends Neurosci 2004;27:662669.CrossRefGoogle ScholarPubMed
Cragg, SJ. Meaningful silences: how dopamine listens to the Ach pause. Trends Neurosci 2006;29:125131.CrossRefGoogle Scholar
Schultz, W. Neuronal reward and decision signals: from theorries to data. Physiol Rev 2015;95:853951.CrossRefGoogle ScholarPubMed
Plenz, D, Wickens, JR.The striatal skeleton: medium spiny projection neurons and their lateral connections. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 121136.Google Scholar
Houk, JC. Information processing in modular circuits linking basal ganglia and cerbral cortex. In: Houk, JC, Davis, JL, Beiser, DG, eds. Models of Information Processing in the Basal Ganglia. Cambridge, MA: MIT Press; 1995: 39.Google Scholar
Haber, SN, Fudge, JL, McFarland, NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 2000;20:23692382.CrossRefGoogle ScholarPubMed
Groenewegen, HJ, Voorn, P, Scheel-Krüger, . Limbic basal ganglia circuits parallel and integrative aspects. In: Soghomonian, J-J, ed. The Basal Ganglia. Novel Perspectives on Motor and Cognitive Functions. New York: Springer; 2016: 1145.CrossRefGoogle Scholar
Berridge, CW, Stratford, TL, Foote, SL, Kelley, AE. Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 1997;27:230241.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Feekes, JA, Cassell, MD. The vascular supply of the functional compartments of the human striatum. Brain 2006;129:21892201.CrossRefGoogle ScholarPubMed
Kita, H, Jaeger, D. Organization of the globus pallidus. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 259276.Google Scholar
Mink, JW, Thach, WT. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol 1991;65:301329.CrossRefGoogle ScholarPubMed
Zahm, DS, Brog, JS. On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 1992;50:751767.CrossRefGoogle ScholarPubMed
Shink, E, Bevan, MD, Bolam, JP, Smith, Y. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 1996;73:335357.CrossRefGoogle ScholarPubMed
Mink, JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996;50:381425.CrossRefGoogle ScholarPubMed
Zahm, DS. The rostromedial tegmental nucleus: connections with the basal ganglia. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 513534.Google Scholar
Temel, Y, Blokland, A, Steinbusch, HW, Visser-Vandewalle, V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 2005;76:393413.CrossRefGoogle ScholarPubMed
Coizet, V, Graham, JH, Moss, J, et al. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J Neurosci 2009;29:57015709.CrossRefGoogle Scholar
Deniau, JM, Chevalier, G. The lamellar organization of the rat substantia nigra pars reticulata: distribution of projection neurons. Neuroscience 1992;46:361377.CrossRefGoogle ScholarPubMed
Domburg, PH, ten Donkelaar, HJ. The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging diseases. Adv Anat Embryol Cell Biol 1991;121:1132.Google ScholarPubMed
Carr, DB, Sesack, SR. GABA-containing neurons in the ventral tegmental area project to the prefrontal cortex. Synapse 2000;38:114123.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Chuhma, N, Zhang, H, Masson, J, et al. Dopamine neurons mediate fast excitatory signal via their glutamatergic synapses. J Neurosci 2004;24:972981.CrossRefGoogle ScholarPubMed
Eblen, F, Graybiel, AM. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 1995;15:59996013.CrossRefGoogle ScholarPubMed
Berendse, HW, Galis-de Graaf, Y, Groenewegen, HJ. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 1992;316:314347.CrossRefGoogle ScholarPubMed
Mena-Segovia, J, Bolam, JP, Magill, PJ. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 2004;27:585588.CrossRefGoogle ScholarPubMed
Comoli, E, Coizet, V, Boyes, J, et al. A direct projection from superior colliculus to substantia nigra for detecting salient visual signals. Nat Neurosci 2003;6:974980.CrossRefGoogle Scholar
Schultz, W. Reward functions of the basal ganglia. J Neural Transm (Vienna) 2016;123:679693.CrossRefGoogle ScholarPubMed
Schultz, W. Recent advances in understanding the role of phasic dopamine activity. F1000Res 2019;8(F1000 Faculty Rev):1680.CrossRefGoogle ScholarPubMed
Benarroch, EE. Pedunculopontine nucleus. Functional organization and clinical implications. Neurology 2013;80:11481155.CrossRefGoogle ScholarPubMed
Winn, P. How to best consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 2006;248:234250.CrossRefGoogle ScholarPubMed
Garcia-Rill, E, Saper, CB, Rye, DB, et al. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019;130:925940.CrossRefGoogle ScholarPubMed
Barrot, M, Georges, F, Veinante, P. The tail of the ventral tegmental area/rostromedial tegmental nucleus: a modulator of midbrain dopamine systems. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 495511.Google Scholar
Heimer, L, Wilson, RD. The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini, M, ed. Golgi Centennial Symposium: Perspectives in Neurobiology. New York: Raven Press; 1975: 177193.Google Scholar
Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357381.CrossRefGoogle ScholarPubMed
Voorn, P, Vanderschuren, LJ, Groenewegen, HJ, Robbins, TW, Pennartz, CM. Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 2004;27:468474.CrossRefGoogle ScholarPubMed
Fudge, JL, Haber, SN. Defining the caudal ventral striatum in primates: cellular and histochemical features. J Neurosci 2002;22:1007810082.CrossRefGoogle ScholarPubMed
Zaborszky, L, Alheid, GF, Beinfeld, MC, et al. Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 1985;4:427453.CrossRefGoogle Scholar
Meredith, GE, Pattiselanno, A, Groenewegen, HJ, Haber, SN. Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 1996;365:628639.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Voorn, P, Brady, LS, Berendse, HW, Richfield, EK. Densitometrical analysis of opioid receptor ligand binding in the human striatum – I. Distribution of mu opioid receptor defines shell and core of the ventral striatum. Neuroscience 1996;75:777792.CrossRefGoogle ScholarPubMed
Berendse, HW, Richfield, EK. Heterogeneous distribution of dopamine D1 and D2 receptors in the human ventral striatum. Neurosci Lett 1993;150:7579.CrossRefGoogle ScholarPubMed
Joyce, JN, Gurevich, EV. D3 receptors and the actions of neuroleptics in the ventral striatopallidal system of schizophrenics. Ann N Y Acad Sci 1999;877:595613.CrossRefGoogle ScholarPubMed
Haber, SN, Wolfe, DP, Groenewegen, HJ. The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey. Neuroscience 1990;39:323338.CrossRefGoogle ScholarPubMed
Deniau, JM, Menetrey, A, Thierry, AM. Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 1994;61:533545.CrossRefGoogle Scholar
Groenewegen, HJ, Berendse, HW. Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 1990;294:607622.CrossRefGoogle ScholarPubMed
Ferry, AT, Ongur, D, An, X, Price, JL. Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 2000;425:447470.3.0.CO;2-V>CrossRefGoogle Scholar
Mogenson, GJ, Jones, DL, Yim, CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 1980;14:6997.CrossRefGoogle ScholarPubMed
Humphries, MD, Prescott, TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 2010;90:385417.CrossRefGoogle ScholarPubMed
Kelley, AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobeh Rev 2004;27:765776.CrossRefGoogle ScholarPubMed
Reynolds, SM, Berridge, KC. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J Neurosci 2002;22:73087320.CrossRefGoogle Scholar
Cardinal, RN, Parkinson, JA, Hall, J, Everitt, BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobeh Rev 2002;26:321352.CrossRefGoogle ScholarPubMed
Parkinson, JA, Olmstead, MC, Burns, LH, Robbins, TW, Everitt, BJ. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by d-amphetamine. J Neurosci 1999;9:24012411.CrossRefGoogle Scholar
Corbit, LH, Muir, JL, Balleine, BW. The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 2001;21:32513260.CrossRefGoogle ScholarPubMed
Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 2002;137:75114.CrossRefGoogle ScholarPubMed
Ito, R, Robbins, TW, Everitt, BJ. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 2004;7:389397.CrossRefGoogle ScholarPubMed
Xu, L, Nan, J, Lan, Y. The nucleus accumbens: a common target in the comorbidity of depression and addiction. Front Neural Circuits 2020;14:37.CrossRefGoogle ScholarPubMed
Wu, H, Hariz, M, Visser-Vandewalle, V, et al. Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy? Mol Psychiatr 2021;26:6065.CrossRefGoogle ScholarPubMed
Denys, D, Mantione, M, Figee, M, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 2010;67:10611068.CrossRefGoogle ScholarPubMed
Nauta, WJH, Mehler, WR. Projections of the lentiform nucleus in the monkey. Brain Res 1966;1:342.CrossRefGoogle ScholarPubMed
Groenewegen, HJ, Berendse, HW, Wolters, JG, Lohman, AHM. The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 1990;85:95118.CrossRefGoogle ScholarPubMed
Alexander, GE, Crutcher, MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13:266271.CrossRefGoogle ScholarPubMed
Haber, SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 2003;26:317330.CrossRefGoogle ScholarPubMed
Greene, DJ, Marek, S, Gordon, EM, et al. Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron 2020;105:742758.CrossRefGoogle ScholarPubMed
Shipp, S. The functional logic of corticostriatal connections. Brain Struct Funct 2017;222:669706.CrossRefGoogle ScholarPubMed
Wall, NR, De la Parra, M, Callaway, EM, Kreitzer, AC. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 2013;79:114.CrossRefGoogle ScholarPubMed
Redgrave, P, Prescott, TJ, Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 1999;89:10091023.CrossRefGoogle Scholar
Mouroux, M, Hassani, OK, Feger, J. Electrophysiological and Fos immunohistochemical evidence for the excitatory nature of the parafascicular projection to the globus pallidus. Neuroscience 1997;81:387397.CrossRefGoogle ScholarPubMed
Van der Werf, YD, Witter, MP, Groenewegen, HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 2002;39:107140.CrossRefGoogle ScholarPubMed
Smith, Y, Raju, DV, Pare, JF, Sibide, M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 2004;27:520527.CrossRefGoogle ScholarPubMed
Galvan, A, Villalba, RM, Wichmann, T, Smith, Y. The thalamostriatal system in normal and disease states. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier: 2016: 477493.Google Scholar
McHaffie, JG, Stanford, TR, Stein, BE, Coizet, V, Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci 2005;28:401407.CrossRefGoogle ScholarPubMed
Dhawale, AK, Wolff, SBE, Ko, R, Ölveczky, BP. The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci 2021;24:12561269.CrossRefGoogle ScholarPubMed
Joel, D, Weiner, I. The organization of the basal ganglia–thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 1994;63:363379.CrossRefGoogle ScholarPubMed
Corbit, LH, Muir, JL, Balleine, BW. The role of the nucleus accumbens in instrumental conditioning: evidence for a functional dissociation between accumbens core and shell. J Neurosci 2001;21:32513260.CrossRefGoogle ScholarPubMed
Groenewegen, HJ, Berendse, HW, Wouterlood, FG. Organization of the projections from the ventral striatopallidal system to ventral mesencephalic dopaminergic neurons. In: Percheron, G, McKenzie, JS, eds. The Basal Ganglia IV. New York: Plenum Press; 1994: 8193.CrossRefGoogle Scholar
Maurin, Y, Banrezes, B, Menetrey, A, Mailly, P, Deniau, JM. Three-dimensional distribution of nigrostriatal neurons in the rat: relation to the topography of striatonigral projections. Neuroscience 1999;91:891909.CrossRefGoogle Scholar
Schmahmann, JD, Caplan, D. Cognition, emotion and the cerebellum. Brain 2006;129:290292.CrossRefGoogle ScholarPubMed
Bostan, AC, Strick, PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2018;19:338350.CrossRefGoogle Scholar
Milardi, D, Quartarone, A, Bramanti, A, et al. The cortico-basal ganglia–cerebellar network: past, present and future perspectives. Front Syst Neurosci 2019;13:61.CrossRefGoogle ScholarPubMed
Grisot, G, Haber, SN, Yendiki, A. Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography. Neuroimage 2021;239:118300.CrossRefGoogle ScholarPubMed
Haber, SN, Liu, H, Seidlitz, J, Bullmore, E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 2022;47:2040.CrossRefGoogle ScholarPubMed
Sesack, SR, Grace, AA. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 2010;35:2747.CrossRefGoogle ScholarPubMed
Packard, MG, Knowlton, BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci 2002;25:563593.CrossRefGoogle ScholarPubMed
Devan, BD, White, NM. Parallel information processing in the dorsal striatum: relation to hippocampal function. J Neurosci 1999;19:27892798.CrossRefGoogle ScholarPubMed
Robbins, TW, Everitt, BJ. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 1996;6:228236.CrossRefGoogle ScholarPubMed
Pennartz, CMA, Groenewegen, HJ, Lopes da Silva, FH. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Progr Neurobiol 1994;42:719761.CrossRefGoogle ScholarPubMed
Redgrave, P, Gurney, K. The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 2006;7:967975.CrossRefGoogle Scholar
Suri, RE, Schultz, W. Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp Brain Res 1998;121:350354.CrossRefGoogle ScholarPubMed
Obeso, JA, Rodriguez-Oroz, MC, Rodriguez, M, et al. Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 2000;23(S10):819.CrossRefGoogle ScholarPubMed
Richfield, EK, Maguire-Zeiss, KA, Vonkeman, HE, Voorn, P. Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s patients. Ann Neurol 1995;38:852861.CrossRefGoogle Scholar
Bergman, H, Wichmann, T, DeLong, MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990;249:14361438.CrossRefGoogle ScholarPubMed
Lozano, C, Tam, J, Lozano, AM. The changing landscape of surgery for Parkinson’s disease. Mov Disord 2018;33:3647.CrossRefGoogle ScholarPubMed
Thevathasan, W, Debu, B, Aziz, T, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord 2018;33:1020.CrossRefGoogle ScholarPubMed
Temel, Y, Kessels, A, Tan, S, et al. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 2006;12:265272.CrossRefGoogle ScholarPubMed
Groenewegen, HJ. Basal ganglia. In: Wolters, EC, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 4577.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×