We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The other prime example of a fine topology is the fine topology of potential theory (in the usual sense of electromagnetism, gravitation, etc.) This is finer than the Euclidean topology but coarser than the density topology. Each of these three topologies has its σ-ideal of small sets: the meagre sets for the Euclidean case, the polar sets for the fine topology of potential theory, and the (Lebesgue-)null sets for the density topology. The polar sets have been extensively studied, not only in potential theory as above but in probabilistic potential theory; pioneers here include P.-A. Meyer and J. L. Doob. Relevant here are the links between martingales and harmonic functions (likewise their sub- and super-versions), Green functions, Green domains, Markov processes, Brownian motion, Dirichlet forms, energy and capacity. The general theory of such fine topologies involves such things as analytically heavy topologies, base operators, density operators and lifting.
In this paper, we review some recent results on nonlocal interaction problems. The focus is on interaction kernels that are anisotropic variants of the classical Coulomb kernel. In other words, while preserving the same singularity at zero of the Coulomb kernel, they present preferred directions of interaction. For kernels of this kind and general confinement we will prove existence and uniqueness of minimizers of the corresponding energy. In the case of a quadratic confinement we will review a recent result by Carrillo and Shu about the explicit characterization of minimizers, and present a new proof, which has the advantage of being extendable to higher dimensions. In light of this result, we will re-examine some previous works motivated by applications to dislocation theory in materials science. Finally, we will discuss some related results and open questions.
Each metric graph has canonically associated to it a polarized real torus called its tropical Jacobian. A fundamental real-valued invariant associated to each polarized real torus is its tropical moment. We give an explicit and efficiently computable formula for the tropical moment of a tropical Jacobian in terms of potential theory on the underlying metric graph. We show that there exists a universal linear relation between the tropical moment, a certain capacity called the tau invariant, and the total length of a metric graph. To put our formula in a broader context, we relate our work to the computation of heights attached to principally polarized abelian varieties.
We define diversity measures that take account of the varying similarities between species, and show how they can be used. We state an unexpected theorem on maximizing diversity: there is a single abundance distribution that maximizes diversity from all viewpoints simultaneously. There follows a broad-brush survey of magnitude, which is closely related to maximum diversity and is defined in the very wide generality of enriched categories. In the case of metric spaces, magnitude encodes fundamental geometric invariants of size (such as volume, surface area and dimension) and is related to the concept of capacity in potential theory.
This paper presents a theoremon universality on orthogonal polynomials/randommatrices under a weak local condition on the weight function $w$. With a new inequality for polynomials and with the use of fast decreasing polynomials, it is shown that an approach of D. S. Lubinsky is applicable. The proof works at all points that are Lebesgue-points for both the weight function $w$ and $\log \,w$.
We describe our implementation of a parallel fast multipole method for evaluating potentials for discrete and continuous source distributions. The first requires summation over the source points and the second requiring integration over a continuous source density. Both problems require (N2) complexity when computed directly; however, can be accelerated to (N) time using FMM. In our PVFMM software library, we use kernel independent FMM and this allows us to compute potentials for a wide range of elliptic kernels. Our method is high order, adaptive and scalable. In this paper, we discuss several algorithmic improvements and performance optimizations including cache locality, vectorization, shared memory parallelism and use of coprocessors. Our distributed memory implementation uses space-filling curve for partitioning data and a hypercube communication scheme. We present convergence results for Laplace, Stokes and Helmholtz (low wavenumber) kernels for both particle and volume FMM. We measure efficiency of our method in terms of CPU cycles per unknown for different accuracies and different kernels. We also demonstrate scalability of our implementation up to several thousand processor cores on the Stampede platform at the Texas Advanced Computing Center.
In this paper we study the balayage of semi-Dirichlet forms. We present new results on balayaged functions and balayaged measures of semi-Dirichlet forms. Some of the results are new even in the Dirichlet forms setting.
An occupation measure describes the expected amount of time a stochastic process spends in different parts of its state space prior to a given random time. It is shown that a basic identity involving occupation measures provides a unified approach to a variety of moment identities for Markov chains, and some connections with potential theory are made.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.