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Universality Under Szeg6’s Condition
Vilmos Totik

Abstract. This paper presents a theorem on universality on orthogonal polynomials/random matri-
ces under a weak local condition on the weight function w. With a new inequality for polynomials
and with the use of fast decreasing polynomials, it is shown that an approach of D. S. Lubinsky is
applicable. The proof works at all points that are Lebesgue-points for both the weight function w
and logw.

1 Introduction and Results

In [6] D. Lubinsky found a simple and elementary approach to universality limits. He
had a second method in [7] based on the theory of entire functions. This second, pow-
erful method needs the verification of some preliminary estimates, which, at general
points, are far from trivial. In this paper we show how those preliminary estimates can
be proved under relatively light conditions, and we recapture/generalize the general
results of [11] and [14] in a precise, sharpened form.

Let p be a positive finite Borel measure with compact support ~ on the real line.
We assume that £ consists of infinitely many points, and we can then form the or-
thonormal polynomials p,, (y;x) = y,(¢)x™ + - - - with respect to p. Let

Knlpsxy) = 2 it ¥)pi (1 7)
j=
be the associated reproducing kernels. It is known that some universality questions
in random matrix theory can be expressed in terms of orthogonal polynomials, in
particular in terms of the off-diagonal behavior of the reproducing kernel; see [3, 6,
8,9] and the references therein. When X = [-1,1] and du(x) = w(x)dx, a form of
universality in random matrix theory can be stated as

a b .
(L1) lim Kalx * 5k * * wekatem) _ sinm(a=b)
. Am K, (x,x) n(a-b)

(with K,,(x, y) = K, (¢4;x, ¥)) uniformly in a, b lying in some compact subset of the
real line. This had been proved under strong conditions on w by various authors
and recently by Lubinsky [6] under continuity and positivity of w. More precisely,
Lubinsky proved that (1.1) holds uniformly in x € S and locally uniformly in a,b «
R provided p is in the Reg class (see below) with support [-1,1], S c (-1,1) is a
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compact set, y is absolutely continuous in a neighborhood of S and its density w (i.e.,
the Radon-Nikodym derivative with respect to Lebesgue-measure) is positive and
continuous on S.

Lubinsky had a second approach [7] to universality based on the theory of entire
functions. This work uses this second approach about which we shall give some details
in the next section.

We shall need some concepts from potential theory, in particular, the logarithmic
capacity cap(X) and the equilibrium measure py of a compact set £ c R; see the
books [1,10,17]. Denote the density of the equilibrium measure yy of £ by ws. It exits
everywhere on Int(2) (and it is continuous - actually C* - there).

We shall also need the concept of the Reg class. For the leading coefficients y,, (y)
of p,(u;x), it is known ([12, Corollary 1.1.7]) that

s 1/n
llﬁglf yu(p)'" > ap(z)’
and the measure y is called to be in the Reg class (or is called regular from the point
of view of orthogonal polynomials) if

1
cap(x)’
and the right-hand side is finite. This is a rather mild assumption, and it holds under
fairly general conditions on y (see [12, Chapters 3 and 4]). For various properties of
orthogonal polynomials with respect to regular measures; see [12]. In particular, if
v, ¢ have the same support, v > p and y is regular, then so is v (since y, (v) < y,(¢)).

M. Findley [4] proved a local version of (1.1) under the condition that the support
of uis [-1,1], logw € L' in a neighborhood of x and x is a Lebesgue-point for both
w and its local outer function. In [11] and [14] the limit (1.1) was verified for general
measures; in particular, [14] contains the result that (1.1) is true a.e. on an interval I
provided u € Reg and logw € L'(I). The proof used a complicated version of the
polynomial inverse image method, and it was pure luck that that method worked in
this case. The main objective of this paper is to reprove and make more precise the
just-mentioned result using the second approach of Lubinsky developed in [7] (see
also [2]).

As before, let y be a finite Borel measure with compact support £ c R. We shall
always assume that y is regular in the sense of (1.2), hence X is of positive capacity. If y
is absolutely continuous with respect to Lebesgue measure on an interval I c Int(X),
then we call its Radon-Nikodym derivative du(x)/dx with respect to Lebesgue mea-
sures its density, and we denote it by w(x).

As usual, we say that x, is a Lebesgue-point for w if

1 r
lim—f |w(xo + £) - w(xo)| dt =0,
r—02r J-r

(12) lim y, ()" =

and for a measure p = Yging + fta Where d i, (x) = w(x)dx is its absolutely continuous
part and pging is its singular part, we call x, a Lebesgue-point for y if it is a Lebesgue-
point for w and

1
11_{% Z—rysing( [x0 — 7, x0 + r]) =0.
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When w, y are defined on a rectifiable Jordan curve (or unions of such curves),
then one can similarly define the concept of Lebesgue-point with respect to arc length.
In what follows w(x)dx denotes the absolutely continuous part of p.

Theorem 1.1  Assume that y € Reg is a measure with compact support X on the real
line such that logw € L'(I) for some interval I, and assume that x, € I is a Lebesgue-
point for both y and logw. Then universality (1.1) holds for u at xo.

As a corollary, it follows that (1.1) is true almost everywhere on I. It was observed
by Levin and Lubinsky [5] that the universality in question implies fine zero spacing of
orthogonal polynomials. Hence, as a second corollary, we have the following theorem
for the zeros z,,1 < zy» < -+ < zp,, of the n-th orthogonal polynomial p, (4, z).

Theorem 1.2 With the assumptions of Theorem 1.1, we have

Jim 7(zp, k41 = 2nk) 03 (x0) =1
for |zn x — xo| < L/n with any fixed L.

Recall that here wy is the density of the equilibrium measure of the the support £
of y.

In particular, if 4 € Regand w is continuous and positive on some open subinterval
I of %, then, uniformly for x lying in any closed part of I, we have

lim n(zp k41— 2k )ws(x) =1
n—oo

for |z, x — x| = 0(1); i.e., the local zero spacing of the orthogonal polynomials reflect
not just the global support, but also the position of the particular zero inside that
support. This follows easily from the proofs below.

Theorem 1.1 follows from Lubinsky’s method in [7] or directly from [2, Theorem 1]
if we prove the following two results (see the next section for more details).

Theorem 1.3  Assume that y € Reg is a measure on the real line with compact support
3 such thatlogw € L'(I) for some interval I, and assume that x, € I is a Lebesgue-point
for both y and logw. Let A > 0 be fixed. Then for all real a

ws (xo)
w(xo) ’

and the convergence is uniform in a € [—A, A] for any fixed A.

1
lim =K, (psxo + a/n,xo +a/n) =
n—oo

Theorem 1.4  Assume that y is a measure on the real line for which w,logw €
L'[-8, 8] for some & > 0 and 0 is a Lebesgue-point for both w and logw. Then for the
corresponding reproducing kernel we have for |zo| < A and for sufficiently large n > n4,

1
(1.3) ~K(2zo/n,20/n) < Cell,
n

where C is a constant independent of zy and A.
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In this theorem (1.3) needs to be verified for complex values zj.

2 Lubinsky’s Approach to Universality
In [7] not K,,, but the kernel

n
Ko (s x,y) = 3 pi(is x)pj(us )
j=0
was used. This is the same as K, for real x, y.
It was shown in [7], without the assumption y € Reg, that (1.1) holds at a point
x = xo where w is continuous and positive if and only if

(2.1) lim K (xo +a/n,xo + aln) _

1
n—>c0 K (x0, x0)

holds uniformly for a lying in compact subsets of the real line. The proof of this
remarkable equivalence is along the following lines.

The positivity and continuity of w at x, easily implies that in a neighborhood
[x0 — 8, x0 + 0] an inequality & < ~ K (x,x) < C holds, which then yields

| p—
;|Kn(€’ t)| <C

via the Cauchy-Schwarz inequality. This and the classical Bernstein-Walsh lemma
for polynomials implies the bound

1
—| K (x0 + a/n, xo + b/n)| < CeClal+ItD
n

for complex a, b. Therefore, for

K;; (%0 + a/(w(x0)K;; (x0,%0)), x + b/ (w(x0) K (%0, X0)))
K (x0,%0)

>

fn(a’b) =

we also have
(2.2) fu(a,b)| < CeClal+IbD

with a possibly different C, which, however, is the same constant for all |a|, |b| < A for
any fixed A provided # is sufficiently large (depending on A).

Hence, {f,(a,b)}2, is a normal family in both a,b € C, and for any (locally
uniform) limit f(a, b) of any subsequence of { f,,(a, b) } 3>, we have the bound

If(a,b)| < CeClal+oh)

To confirm with [7] let us mention that this last inequality, combined with the bound-
edness of f(a, b) on the real line (which is a consequence of (2.1)), implies (see [7, Sec-
tion 4, (4.4)])

|f (a,b)| < CeCUalTtD,

Thus, f(a,b) is an entire function of exponential type in each variable, and in [7]
Lubinsky used the theory of exponential functions together with some properties of
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K (&, t) and of some classical results for Gaussian quadrature to show that necessarily
sinn(a-b)

> b =
flab) = T
The crucial inequality (2.2) is a consequence (use Cauchy-Schwarz) of
1
(2.3) ~Ku(xo+a/n,xo+aln) < CeClal,
n

(here K, and not K}, is used!) uniformly in |a| < A for any fixed A and sufficiently
large n (say n > n,), provided we know the behavior K;; (xo, x0)/n ~ 1.

Once the equivalence of (1.1) and (2.1) is established, (1.1) follows immediately at
X = Xp if a limit

(2.4) lK:,'(‘u;xo+a/n,x0+a/n):L
n

(with a finite L > 0) can be established uniformly in a lying on any compact subset of
the real line, and here K, can be replaced by K,,. Theoretically, (2.1) could be true even
ifalimit like (2.4) does not hold, though so far no example has been found. Moreover,
until now the limit (2.4) has been established only for measures in the Reg class.

As we can see from this setup, to prove (1.1) along these lines one needs two things:

(A) to prove the equivalence of (1.1) with (2.1), and
(B) to establish (2.1).

We have already mentioned that (A) has been done in [7] provided w is continuous
and positive at xo. If we drop this condition, the crucial inequality (2.3) becomes
rather non-trivial, and the aim of Theorem 1.4 is to establish it under the Lebesgue-
point condition stated there (cf. also [7, Theorem 2.1], where (A) is proved at a Lebes-
gue-point provided w has a positive lower bound in a neighborhood of x). For part
(B) presently the only approach is via a limit like (2.4) using the Reg condition. The
limit (2.4) is also less obvious in the non-continuous case, and it is the aim of Theorem
1.3 to establish (2.4) under the aforestated Lebesgue-point condition.

We emphasize, that in this paper both (A) and (B) are proved under the same
Lebesgue-point condition using the same polynomial inequality to be discussed in
Lemma 3.1.

Since some of the arguments sketched above are somewhat subtle in our case, we
also mention that the sufficiency of Theorems 1.3 and 1.4 for Theorem 1.1 follows di-
rectly from [2, Theorem 1] by Avila, Last, and Simon. In fact, these authors used a
modification of the method of Lubinsky to prove in [2, Theorem 1] that (1.1) holds at
a point x = x, that is a Lebesgue-point for y if
(a) (2.1) holds uniformly for a lying in compact subsets of the real line,

(b) liminf,_ . %K,, (x0,%0) >0,
(c) forevery e > 0 there is a C, such that for any R there is an N so that foralln > N
and for all z € C with |z| < R we have

1
;K,,(xo +2o/1, X0 + z0/n) < C. exp(e|zo]?).

Now if xg is a Lebesgue-point for both y (€ Reg) and log w, then Theorem 1.3 implies
(a) and (b), while Theorem 1.4 implies (c), so it is left to prove Theorems 1.3 and 1.4.
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3 Proof of Theorem 1.4

By simple scaling we can assume § = 1.
For the proof we need to consider the reciprocal of the diagonal of the reproducing
kernel; the Christoffel functions associated with y are defined as

n -1
M(zou) =K, (2,2)' = 2)*) = inf anzd,
@ =K@ = (L ln@l) = inf | [ |PLdy

where the infimum is taken for all polynomials of degree at most n that take the value
latz.
We shall prove Theorem 1.4 in the equivalent form

e_C‘ZOI
Cn

(3.) An(zo/n, ) 2

Since A, (-, #) is monotone increasing in the measure y, we can assume that the sin-
gular part y; of y is zero; i.e., du(x) = w(x)dx and y is supported on [-1,1]. By
symmetry, it is enough to consider Jzy > 0.

The proof is based on the next lemma.

Lemma 3.1 Letw > 0 be a function on [-1,1] such that w,logw € L'[-1,1], and let
0 be a Lebesgue-point for logw. Then there is a constant M such that for x € [-1,1] we
have

1

(3.2) 1P, (x)2 < MMV f 1P [2w
-1

for any polynomials P, of degree at most n =1,2,. ...

Note however, that outside [-1,1] (and close to 0) nothing more than |P,(z)| <
M exp(Mnz|) (more precisely |P,(z)| < M exp(Mn|Jz|)) can be said (just think of
the classical Chebyshev polynomials with w = 1).

Proof of Lemma 3.1 'The following version of Lemma 3.1 was proved in [16, Lem-
ma 3].

Lemma 3.2 Letybea C*™* (a > 0) smooth simple Jordan curve (a homeomorphic
image of the unit circle) with arc length measure s,, w > 0 a (s,-measurable) function
on y such that w,logw € L'(s,), and let {y € y be a Lebesgue-point for logw (with
respect to s, ). Then there is a constant M such that for z € y we have

(3.3) |Qu(2)* < MeMV nlz=bol 4y f|Qn|2w ds,
Y
for any polynomials Q,, of degree at mostn =1,2, . ...

We are going to apply this with y = Cy, the unit circle. Let

Qun(2) = "B 5(2+ ).
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This is a polynomial of degree at most 21 such that |Qz,(e’")| = |P,(cost)|. Define
on C; the weight W (e’*) = w(cos t)|| sin ¢|, for which we have

L 1@ @R WE@dse (2) = [ 1Qu(e )W (e )ds
= [: |P,(cos t)|*w(cos t)| sin t|dt

= 2[11 |P, (x)[*w(x)dx.

Under the map e’* — cost, the point i is mapped into 0, and it is clear that zy = i is
a Lebesgue-point for log W (with respect to arc-measure on C;). Hence we can apply
(3.3) to Qa, to get

|Q2n(eit)|2 SMeM\/Zn\eit_” n/c‘ |Q2n|2W dSCy
1

Since for t € [0, 7] we have |e’’ — i| ~ | cos t|, estimate (3.2) follows. [ |

We shall also use the following lemma on fast decreasing polynomials, which was
proved in [16, Lemma 4].

Lemma 3.3 Let K be a compact subset of the plane, Q) the unbounded component of
its complement, and Z € 0Q) a point on the outer boundary of K. Assume that there is
a disk in Q that contains Z on its boundary. Then for every 5 < 1 there are constants
c1,C1 > 0, and for every n = 1,2, ... polynomials S, of degree at most n, such that
S.(2)=1,|P,(z)|<1forz e K and

1S,(2)] < Ceal==2D" ;g

(The constants Cy, ¢; depend on f3.) We shall apply this lemma to a K, say bounded
by a smooth Jordan curve, which contains the segment [-2,2] on its boundary and
contains all the segments [-2,2] — ip with 0 < p < 1in its interior. If |zg| < A, Tz > 0
and n is sufficiently large, then we shall set Z = 0, § = 2/3 in Lemma 3.3 and consider
with the S, from that lemma the polynomials S} (z) = S,(z — zo/n). For it we have
S*(zo/n) =1, and for x € [-1,1] (in which case z := x — zy/n lies in K)

‘)2/3 2/3

(3.4) IS5 (x)] < Cpe a1 (nlx=20/n)™ o Clec‘lz"‘me_”(”lxl)

with some absolute constants ¢;, C; > 0.
Now we are ready for the proof of (3.1).

Proof of (3.1) Recall that du(x) = w(x)dx, x € [-1,1] and w,logw € L'[-1,1]. We
have to estimate A, (zo/#, ) from below for |zo| < A. Let P, be a polynomial of degree
at most # such that P,(zo/n) = 1and

An(zo/n, ) = f 1P, .

1
f IPaJPw > —
n

If
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then there is nothing to prove, otherwise we obtain from Lemma 3.1 that

(3.5) P, (%) < MMV, x € [-1,1].
With the S, from (3.4), let
(3.6) R, (2) = Py(2)S;(2).

This has degree at most 2#, it has value 1 at zo/n, and we estimate its square integral
with respect to w on [-1,1] as follows.

The Lebesgue-point property of w at 0 means that for every € > 0 thereisap > 0
such that if 0 < 7 < p, then

(3.7) fm O - wo)ldg <er

We define the measure v as dv(x) = w(0)dx on [-1,1]. We shall compare the values
An(zo/n, u) and Az, (zo/n, v) of the Christoffel functions associated with g and v,
respectively. From that comparison (3.1) will follow using the following facts. Since
the measure v is just a constant multiple of the Lebesgue-measure, for it we have (see
e.g., [13, Theorem 1])

1
An(x,v) ~ =
n
uniformly on [-1/2,1/2], hence there is a constant Cy such that
n
(3.8) > g;(x)* < Con, x €[-1/2,1/2],
=0

where g; denote the orthonormal polynomials with respect to v (they are a constant
multiple of the classical Legendre polynomials). Let zy € C be arbitrary. There are
constants |¢;| = 1 such that

i'qi(z"/”ﬂz = anej%(zo/ﬂ)z-
j=0 j=0

For the polynomial Q(z) = 7., €;q;(z)* we then have Q(zo/n) = Yo lq;(zo/n)[,
and at the same time for all x € [-1/2,1/2] the inequality |Q(x)| < Con holds (because
of (3.8)). Therefore, by the Bernstein—-Walsh lemma [18, p. 77] if

g(z) =log ‘22 +/(22)% - 1|

denotes the Green’s function of C \ [-1/2,1/2], then
n
>~ lg;(zo/m)P =1Q(z0/n)| < "¢/ Con < e“0lCyn,
=0
where we used that g is Lip 1 in a neighborhood of the origin. This inequality proves
(3.9) Aan(z0/1,v) > w(0)cre” 70l [

with some constants ¢,, C, > 0 that are independent of n and zy, and then, as we shall
see, a similar inequality holds for A, (zo/n, ).
Clearly,

Aan(zo/n,v) < [11 R[> w(0)
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with the polynomial R, from (3.6), and we compare the right-hand side with the
square integral of R, against w. It follows from (3.4) and (3.5) that

IR ()] < VMG exp( My/nlxl/2 - u(nlx))??),  xe[-L1],
and hence
(310)  |Ru(x)] < Mye ™ exp(~(ar/2)(nx)*?),  xe[-11]

with some constant M;.
It follows from (3.7) for 2% /n < p/2,k =1,2,. .., that

23 2k+1
fzk/nslxlszkﬂ/n |Rn(x)|2|W(x) - W(0)|dx : MlzeZCIIZ(’l 87 exp( _(C1/2)22k/3) >

and also
2
f IR, (x)*|w(x) - w(0)|dx < Mlzezcllz"lmsf.
x|<2/n n

For the integral over |x| > p/2, we write (see (3.10))
fp/zsmg IR, (x) P () = w(0)|dx < CsM2e>0™ exp(~(c,/2)(np/2)*?).
Summing these up we obtain
/[11,1] IR, [*dv - f[fu] |Rn|2dy < C4M12e2”‘z°|2/3§ +o(1/n)

with a constant C, that depends only on w. Hence, in view of |R,,({)| < |P,({)], it
follows that

Nan(z0/1,v) < An(z0/1, 1) + C4M1262”‘Z“|2/3% +o(1/n).

Given A (recall that |zo| < A), choose € > 0 so that

—CA
2/3 w(0)ce” 2
CaM2e2A ¢ < w(0)ee™™” )i

(cf. (3.9)), and then with this ¢ > 0 for sufficiently large n, say for n > n,, we get from
the previous estimate,

w(0)cye 24

Aan(zo/n,v) < Ay(z0/n, 1) +
2n

This gives, in view of (3.9),

w(0)cye G217l

An(zofns p) 2 —————,

and (3.1) has been verified. [ |
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4 Proof of Theorem 1.3

We prove the theorem in the equivalent form

w(xo)
wZ(Xo) ’

lim nd,(xo +a/n,u) =

We use the method of [16].

Without loss of generality we can assume that xo = 0 and the support of y is con-
tained in [-1/2,1/2].

We need to prove that, under the assumption that the point 0 is a Lebesgue-point
for both y and log w, we have

(4.1) li;llsoljp nAn(a/n,p) < ;1;((00))
and
(4.2) lirrlr_1>i£f niAy(a/n, p) > (:;((OO))

Recall that the Lebesgue-point property of y at 0 means that for every ¢ > 0 there is a
p > 0such that if 0 < 7 < p, then (3.7) as well as

(4.3) [/‘Sing({x | |x| < T}) et
hold.

We define the measure v as dv(t) = w(0)dt in a small neighborhood of 0 and
v = p outside of that neighborhood. It easily follows from the localization theorem
[12, Theorem 5.3.3] that v is also in the Reg class with support equal to the support of .
We shall compare the values 1,(a/n, u) and A, (a/n,v) of the Christoffel functions
associated with y and v, respectively. Since the density v is constant (= w(0)) in a
neighborhood of 0, in this neighborhood we have (see [13] and also [15, Section 8])

w(0)
wz(O)

locally uniformly (recall that X is the support of ¢ and wy is the density of the equi-
librium measure of X). In particular,

(4.4) lim nd,(x,v) =

w(0)
wz(O)

lim ni,(a/n,v) =

uniformly in |a| < A for any given A > 0.
We can assume that p in (3.7) and (4.3) is so small that in [—p, p] we have dv(x) =
w(0)dx.

Proof of (4.1) It follows from the proof of (4.4) in [15] that there are polynomials Q,
of degree at most n such that Q,(a/n) =1,|Q,(2z)| < 1forall z € ¥ and

w(0)

wx(0)

With f = 2/3 and some small § > 0, let S, be the polynomials of degree én from
Lemma 3.3 for K = [-1,1] and Z = 0, and set R,,(x) = Q,(x)Ss,(x — a/n). This

(4.5) lim n f 1Qu2dv =

https://doi.org/10.4153/CMB-2015-043-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-043-5

Universality Under Szegd’s Condition 221

is a polynomial of degree at most n(1+ 8) with R,,(a/n) = 1, |R,(x)| < |Q.(x)| <1
(x € ), and this will be our test polynomial to get an upper bound for A,, 1,6y (a/#, ).

We estimate the integral of |R,|* against y using the Lebesgue-point properties
(3.7) and (4.3). Since for fixed A and for |a| < A

IR ()| < Crexp(—ci(nd]t - a/n|)2/3) < Cyexp( —cl(n6|t|)2/3) ,te[-1/2,1/2]

with some ¢, C;, C4 (where C4 may depend on A), it follows for 2k/n6 <pl2, k=
1,2,..., that (see (3.7))

k+1
5 exp( —c122k/3)

2
R, () w(t) = w(0)|dt < C
[zk/nwgm/ng A(DF () = w(O)|d < Cre™

and also
2
R, ()P w(t) = w(0)|dt < e—.

oo RO (1) (0}t < &

On the other hand, for the integral over |t| > p/2, we write
f IR, (t)*lw(t) —w(0)|dt < Cexp( —cl(n6p/2)2/3).
p/2<[t|, tex

Summing these up we obtain

LIRPw= [ [Raw(0) < C- 4 0(1/n),
p> p> on

where C may depend on A but not on ¢, 6, or #.
Similar reasoning based on (4.3) rather than (3.7) gives

&
fz [RuPdpsing < C~ + 0(1/m).

From these (as well as from the estimates leading to these inequalities) and from
the fact that v = y outside the interval where dv(x) = w(0)dx, we infer

f Rul*dp - f IR, |dv < cai +o(1/n).
n
Hence, we obtain from (4.5)

limsup n(1+ 8)A, 45y (a/n, u) <limsup n(1+ §) f IR, [*du

n—oo n—oo

<limsup n(1+9) f |Qu*dv + ng(l +96)

n—oo
w(0)
wz(0)
with some constant C, that depends only on A. Then the monotonicity of A, in n
implies that for the whole sequence of natural numbers

w(0)

€
li n s u) < (1 —_— —(1 .
1;1:301:pn/1 (a/n,pu) < ( +8)a)2(0) +C28( +9)

- (1+9) +c2§(1+5)

Letting ¢ - 0 and then & — 0, we obtain (4.1) [ |
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Proof of (4.2) Assume again that 0 € X is a Lebesgue-point for both u (see (3.7),
(4.3)) and log w, and select p so that (3.7), (4.3) is true for all 7 < p.

Assume to the contrary that there is an & < 1 and an infinite sequence N € N of
the natural numbers such that for every n € N there are polynomials Q,, of degree at
most n with the properties Q, (a/n) = 1and

2 W(O) 1
(4.6) [ 1Qufdu < RO

In particular,

2 w(0) 1
f1Qufw<a

ws(0)n’

Let A > 0 be such that logw € L'[-A, A]. Recall that v was equal to u outside a
small neighborhood of 0, and it does not matter what neighborhood we take, so we
can assume that y and v coincide outside [-A, A].

Lemma 3.1, transformed from [-1,1] onto [-A, A], gives

|Qu () < Mexp(My/nld]),  te[-A,4],

with some constant M (recall that 0 is a Lebesgue-point of logw, so Lemma 3.1 is
applicable).

With f = 2/3 and some & > 0 consider again the polynomials S, of degree dn
from Lemma 3.3 for K = [-1,1] and for the point Z = 0, and set

Ry (x) = Qu(x)Ssn(x —a/n).
This is a polynomial of degree at most n(1 + &) with
Ru(a/n) =1, [R.(D)[ <|Qu(1)] (teZ),

and this will be our test polynomial to get an upper bound for A, (1,5)(L, v), 7 € N.
Since, as before,

|Ssu(t—a/n)| < Caexp( —cl(n6|t|)2/3) , te[-1/2,1/2], |al < A,
it immediately follows that
IR (1) < MCyexp( My/nlt] - ci(nd]t])*3),  te[-A,A]
and hence
(4.7) Ry ()| < CaMgexp(—(cr/2)(nd]t))?),  te[-AA]

with an M depending on 6.
It follows from (3.7) and (4.7) for 25 /nd < p/2(< A), k =1,2, ..., that

2k+1
nd

Lk/n5£|t|32k*1/n6 |R"(t)|2|w(t) - W(O)|dt < Cngs exp( _(51/2)22’(/3) >

and also
2

R, (t)]2|w(t) - w(0)|dt < C3M?
oo B (OP () (0}t < ChMFe
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For the integral over A > |t| > p/2, we have
f IR, (1)|w(t) - w(0)|dt < CZCMz exp(~(1/2)(ndp/2)*"),
p/2<|t|<A
where C is the integral of |w(t) — w(0)| over [-A, A]. Summing these up we obtain
€
f[ Rl - f[ |y [RalP s < CRCME 5+ o(1/m)
These yield again (as v = y outside [-A, A])
/ IR, [2dv < [ R [2dy + Cf,CMﬁai +o(1/n).

n

Hence, in view of |R,,(¢)| < |Q.(1)], it follows from (4.6)

lim sup n(1+ 8)A,(115)(a/n,v) <limsup n(1+ &) [ IR, [*dv
neN neN

<limsup n(1+ 8) / IR, [*du + CiCMﬁ%(l +90)

neN

w(0)
wz(0)
and here C, and C are independent of € and 8. But for (1+ §)a < 1 (and we can

make this happen by selecting a small §) and small ¢, this contradicts (4.4). This
contradiction proves the lower estimate in (4.2) and the proof is complete. ]

<(1+0)a +c§CM§§(1+5),
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