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Balayage of Semi-Dirichlet Forms

Ze-Chun Hu and Wei Sun

Abstract. In this paper we study the balayage of semi-Dirichlet forms. We present new results on

balayaged functions and balayaged measures of semi-Dirichlet forms. Some of the results are new even

in the Dirichlet forms setting.

1 Introduction

Balayage is an important notion in potential theory that plays a crucial role in both

classical potential theory and its probabilistic counterpart (cf. e.g., Bliedtner–Hansen

[2] and Doob [5]). In [25–27], Silverstein discussed the balayage of symmetic Dirich-

let forms. In [17], LeJan extended Silverstein’s results to non-symmetric Dirichlet

forms, and in [18], he studied some properties of balayaged Dirichlet forms, among

other things. In this paper, we study the balayage of semi-Dirichlet forms and fo-

cus on balayaged functions and balayaged measures. We refer the reader to Ma–

Overbeck–Röckner [19], Ma–Röckner [20] and Fukushima–Oshima–Takeda [10]

for descriptions of the (semi-)Dirichlet form theory and the notation and terminol-

ogy of this paper. The reader is also referred to the recent review paper of Ma–Sun

[22] for a brief introduction to semi-Dirichlet forms. Note that a semi-Dirichlet

form is not merely a mathematical generalization of a Dirichlet form. We refer the

reader to [19], Overbeck–Röckner–Schmuland [23], and Röckner–Schmuland [24]

for many interesting examples of semi-Dirichlet forms. We also refer the reader to

Fukushima–Uemura [11] for a recent construction of jump-type Hunt processes us-

ing semi-Dirichlet forms.

Let E be a metrizable Lusin space (i.e., E is topologically isomorphic to a Borel

subset of a complete separable metric space) and let m be a σ-finite positive measure

on its Borel σ-algebra B(E). Let M = (Ω,F,
(
Ft )t≥0, (Xt )t≥0, (Px)x∈E∆

)
be a right

(continuous strong Markov) process with state space E, life time ζ , and cemetery ∆.

Define Pt f (x) := Ex[ f (Xt )] for f ∈ Bb(E) and x ∈ E, where Bb(E) denotes the set of

all bounded measurable functions on E. Suppose that for each t > 0 the restriction

of Pt to Bb(E) ∩ L2(E; m) can be uniquely extended to a contraction operator Tt on

L2(E; m). Then one can check that the semigroup (Tt )t>0 is strongly continuous on
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L2(E; m). Suppose that (Tt )t>0 is analytic. We set

D(E) := {u ∈ L2(E; m) | sup
t>0

1
t
(u − Tt u, u) <∞},

E(u, v) := lim
t→0

1
t
(u − Tt u, v), ∀u, v ∈ D(E).

Hereafter ( · , · ) and ‖ · ‖2 denote the usual inner product and norm of L2(E; m).

Then (E,D(E)) is a quasi-regular semi-Dirichlet form, and M is properly associated

with (E,D(E)) in the sense that Pt f is an E-quasi-continuous m-version of Tt f for

all f ∈ Bb(E) ∩ L2(E; m) and all t > 0. On the other hand, if a semi-Dirichlet

form (E,D(E)) on L2(E; m) is quasi-regular, then it is properly associated with a right

process M.

In this paper, we assume that (E,D(E)) is a quasi-regular semi-Dirichlet form on

L2(E; m). By [19, Proposition 3.6(iii)], every u ∈ D(E) has an E-quasi-continuous

m-version denoted by ũ. We write f ≤ g or f = g for f , g ∈ L2(E; m) if the inequality

or equality holds m-a.e. on E.

Proposition 1.1 ([19, Proposition 2.19]) Let h be a function on E that has an

E-quasi-continuous m-version denoted by h̃. Define for A ⊂ E,

Lh,A := {w ∈ D(E) | w̃ ≥ h̃ E-q.e. on A}.

Suppose that Lh,A 6= ∅. Let α > 0.

(i) There exists a unique hαA ∈ Lh,A such that for all w ∈ Lh,A

(1.1) Eα(hαA,w) ≥ Eα(hαA, h
α
A).

(ii) Eα(hαA,w) ≥ 0 for all w ∈ D(E) with w̃ ≥ 0 E-q.e. on A. In particular, hαA is

α-excessive and Eα(hαA,w) = 0 for all w ∈ D(E)Ac , where

D(E)Ac := {u ∈ D(E) | ũ = 0 E-q.e. on A}

and Ac := E − A.

(iii) hαA is the smallest function u on E such that u ∧ hαA is an α-excessive function in

D(E) and ũ ≥ h̃ E-q.e. on A. In particular, (0 ≤) hαA ≤ h (m-a.e. on E) if and

only if h ∧ hαA is an α-excessive function in D(E). In this case h̃αA = h̃ E-q.e. on A.

(iv) Let g be a function on E that has an E-quasi-continuous m-version denoted by g̃.

If Lg,A 6= ∅ and g̃ ≥ h̃ E-q.e. on A, then gαA ≥ hαA (m-a.e. on E).

(v) Suppose that B ⊂ A ⊂ E. Then (hαB)αA = hαB (m-a.e. on E). If h ∧ hαA is an

α-excessive function in D(E), then (hαA)αB = hαB (m-a.e. on E).

We call hαA the α-balayaged (or α-reduced) function of h on A. We define the

balayaged operator S( · , · , · ) on (0,∞) × 2E × D(E) by

(1.2) S(α,A, h) := hαA,

where 2E is the family of all subsets of E. To simplify notation, we also write SαAh for

S(α,A, h) in the sequel. In Section 2, we investigate some properties of the balayaged

operator S( · , · , · ) and, in particular, answer the following questions:
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1. Fix α and A. Is hαA a continuous operator with respect to (w.r.t.) the function h?

2. Fix α and h. Is hαA a continuous mapping w.r.t. the set A in some sense?

3. Fix A and h. For 0 < α < β, what is the relation between hαA and h
β
A and what is

the relation between (hαA)
β
A and (h

β
A)αA? What about the limit of h

β
A as β → α?

In Section 3, we discuss the balayage of measures. It is known that any quasi-

regular semi-Dirichlet form is quasi-homeomorphic to a regular semi-Dirichlet form

(cf. Hu–Ma–Sun [13, Theorem 3.8]). For simplicity, we assume in Section 3 that

(E,D(E)) is a regular semi-Dirichlet form on L2(E; m). Recall that (E,D(E)) is regu-

lar if the following conditions hold:

(i) E is a locally compact separable metric space and m is a positive Radon measure

on E with supp[m] = E.

(ii) C0(E) ∩ D(E) is dense in D(E) with respect to the E1-norm.

(iii) C0(E) ∩ D(E) is dense in C0(E) with respect to the uniform norm ‖ ‖∞.

Hereafter C0(E) denotes the set of all continuous functions on E with compact sup-

ports. A positive Radon measure µ on E is said to be of finite energy integral (w.r.t.

(E,D(E))) if there exists a positive constant C such that

∫

E

|v(x)|µ(dx) ≤ CE1(v, v)1/2, ∀v ∈ C0(E) ∩ D(E).

We denote by S0 the family of all positive Radon measures of finite energy integral.

Let µ ∈ S0 and α > 0. Then there exists a unique Uαµ ∈ D(E) such that

Eα(Uαµ, v) =

∫

E

v(x)µ(dx), ∀v ∈ C0(E) ∩ D(E).

We call Uαµ an α-potential.

Lemma 1.2 Let u ∈ D(E) and α > 0. Then the following conditions are equivalent:

(i) u is α-excessive.

(ii) u is an α-potential.

(iii) Eα(u, v) ≥ 0, ∀v ∈ D(E), v ≥ 0.

(iv) Eα(u, v) ≥ 0, ∀v ∈ C0(E) ∩ D(E), v ≥ 0.

Proof The equivalence of (i) and (iii) is from [19, Theorem 2.4]. (ii) ⇒ (iv) and

(iii)⇒ (iv) are trivial. Suppose that (iv) is satisfied. By [13, Lemma 2.4] and following

the proof of [10, Theorem 2.2.1 (iv) ⇒ (i)], we can prove (ii). Let v ∈ D(E), v ≥ 0.

Then we can choose a sequence vn ∈ C0(E) ∩ D(E) that is E1-convergent to v. By

[19, Remark 2.2(iii)] and [20, I. Lemma 2.12], we know that v+
n → v weakly in D(E)

as n → ∞. Then Eα(u, v) = limn→∞ Eα(u, v+
n ) ≥ 0, which proves (iii).

Let B ⊂ E. Then, by Proposition 1.1, we know that the α-balayaged function

(Uαµ)αB of Uαµ on B is α-excessive. By Lemma 1.2, there exists a unique measure

µαB ∈ S0 such that (Uαµ)αB = Uαµ
α
B . Then µαB is called the α-balayage (or α-sweeping

out) of µ on B. We define the balayaged operator T( · , · , · ) on (0,∞) × 2E × S0 by

(1.3) T(α,B, µ) := µαB .
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In Section 3, we first give a characterization of µαB and then investigate some proper-

ties of T( · , · , · ). In particular, we answer the following questions:

4. Fix α and B. Is µαB a continuous mapping w.r.t. the measure µ?

5. Fix α and µ. Is µαB a continuous mapping w.r.t. the set B in some sense?

6. Fix B and µ. For 0 < α < β, what is the relation between µαB and µβB and what is

the relation between (µαB)
β
B and (µβB)αB? What about the limit of µβB as β → α?

Before ending this introduction, let us comment on the motivation and poten-

tial application of this work. Time change is one of the most basic transformations

for Markov processes. Recently many remarkable results have been obtained for the

time changes of symmetric Markov processes and Markov processes in weak dual-

ity (cf. Fukushima–He–Ying [9], Chen–Fukushima–Ying [3, 4] and Fitzsimmons–

Getoor [8]). It was shown by Fitzsimmons [7, Theorem 5.7] that if the right process

M is associated with a semi-Dirichlet form (E,D(E)), then the time-changed process

of M is also associated with a semi-Dirichlet form. We call this latter semi-Dirichlet

form the balayaged semi-Dirichlet form of (E,D(E)). A direct motivation of this

paper is to give a complete characterization of the balayaged semi-Dirichlet form.

However, the problems caused by the SPV integrability in the Beurling–Deny de-

composition of semi-Dirichlet forms and the non-Markovian property of the dual

forms (cf. Hu–Ma–Sun [12–15]) make the complete characterization very difficult.

We hope that the results obtained in this paper can help us better understand the

balayage of semi-Dirichlet forms.

2 Balayage of Functions

In this section we investigate some properties of the balayaged operator S( · , · , · )

defined in (1.2). Let (E,D(E)) be a quasi-regular semi-Dirichlet form on L2(E; m).

Denote by (Tt )t>0, (Gα)α>0 and (L,D(L)) (resp. (T̂t )t>0, (Ĝα)α>0 and (L̂,D(L̂)))

the semigroup, resolvent and generator (resp. co-semigroup, co-resolvent and co-

generator) associated with (E,D(E)). Since (E,D(E)) satisfies the sector condition,

for any α > 0, there exists a constant Kα > 0 (called the continuity constant) such

that

(2.1) |Eα(u, v)| ≤ KαEα(u, u)1/2Eα(v, v)1/2, ∀u, v ∈ D(E).

Moreover, by (2.1) we can show that for any β ≥ α > 0,

(2.2) |Eβ(u, v)| ≤ (Kα + 1)Eβ(u, u)1/2Eβ(v, v)1/2, ∀u, v ∈ D(E).

Let A ⊂ E and h ∈ D(E). By (1.1) and (2.1), we have

Eα(hαA, h
α
A) ≤ Eα(hαA, h) ≤ KαEα(hαA, h

α
A)1/2Eα(h, h)1/2.

Then

(2.3) Eα(hαA, h
α
A) ≤ K2

αEα(h, h).
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Furthermore, by (2.2) we can show that for any β ≥ α > 0,

(2.4) Eβ(h
β
A, h

β
A) ≤ (Kα + 1)2Eβ(h, h).

Recall that a function u ∈ L2(E; m) is called α-excessive (resp. α-coexcessive) if

e−αt Tt u ≤ u (resp. e−αt T̂t u ≤ u) for all t > 0.

Lemma 2.1 (cf. [19, 20]) Let u ∈ L2(E; m) and α > 0. If u is α-excessive, then

u ≥ 0. Furthermore, we have

(i) u is α-excessive if and only if βGβ+αu ≤ u for all β > 0;

(ii) if u ∈ D(E), then u is α-excessive if and only if Eα(u, v) ≥ 0 for all v ∈ D(E), v ≥
0;

(iii) if f ∈ L2(E; m), f ≥ 0, then Gα f is α-excessive;

(iv) if u is α-excessive, then u is β-excessive for all β > α;

(v) if u, v ∈ L2(E; m) are α-excessive, then u ∧ v is α-excessive;

(vi) if u ∈ L2(E; m) is α-excessive, then u ∧ 1 is α-excessive.

2.1 Operator S(α,A, · )

In this subsection we fix α > 0, A ⊂ E and consider the operator S(α,A, · ), i.e.,

SαA( · ) on D(E).

Theorem 2.2 (i) SαA is sub-Markovian: if h ∈ D(E) with 0 ≤ h ≤ 1, then 0 ≤
SαAh ≤ 1.

(ii) SαA is sub-additive: if h1, h2 ∈ D(E), then SαA(h1 + h2) ≤ SαAh1 + SαAh2.

(iii) SαA is continuous on D(E) w.r.t. the Eα-norm.

Proof (i) Let h ∈ D(E) with 0 ≤ h ≤ 1. By Proposition 1.1(ii), hαA is α-excessive.

Then hαA ≥ 0 by Lemma 2.1. Since 1 ∧ hαA is α-excessive by Lemma 2.1(vi) and 1 ≥ h̃

E-q.e. on A, hence 1 ≥ hαA by Proposition 1.1(iii). Therefore 0 ≤ SαAh ≤ 1.

(ii) Let h1, h2 ∈ D(E). By Proposition 1.1(iii), ˜((h1)αA + (h2)αA) ≥ h̃1 + h̃2 = h̃1 + h2

E-q.e. on A. By Proposition 1.1(ii), (h1)αA + (h2)αA is α-excessive. Then ((h1)αA +

(h2)αA) ∧ (h1 + h2)αA is also α-excessive. Therefore we obtain by Proposition 1.1(iii)

that (h1 + h2)αA ≤ (h1)αA + (h2)αA, i.e., , SαA(h1 + h2) ≤ SαAh1 + SαAh2.

(iii) Let {hn}n≥1 be a sequence in D(E) such that hn converges to h ∈ D(E) w.r.t.

the Eα-norm as n → ∞, i.e., ,

(2.5) lim
n→∞

Eα(hn − h, hn − h) = 0.

By (ii), we get

(2.6) (hn)αA − hαA ≤ (hn − h)αA, hαA − (hn)αA ≤ (h − hn)αA.
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By (2.6), Lemma 2.1(ii), the sector condition, and (2.3), we get

0 ≤ Eα
(

(hn)αA − hαA, (hn)αA − hαA
)

= Eα
(

(hn)αA, (hn)αA − hαA
)

+ Eα(hαA, h
α
A − (hn)αA)

≤ Eα((hn)αA, (hn − h)αA) + Eα(hαA, (h − hn)αA)

≤ KαEα((hn)αA, (hn)αA)1/2Eα((hn − h)αA, (hn − h)αA)1/2

+ KαEα(hαA, h
α
A)1/2Eα((h − hn)αA, (h − hn)αA)1/2

≤ K3
αEα(hn, hn)1/2Eα(hn − h, hn − h)1/2

+ K3
αEα(h, h)1/2Eα(h − hn, h − hn)1/2,

(2.7)

which together with (2.5) implies that

lim
n→∞

Eα(SαAhn − SαAh, SαAhn − SαAh) = 0.

2.2 Operator S(α, · , h)

In this subsection we fix α > 0, h ∈ D(E) and consider the operator S(α, · , h).

Proposition 2.3 Let A,B be two subsets of E. Then for any α > 0 and h ∈ D(E), we

have

(i) if B ⊂ A, then hαB ≤ hαA ≤ hαB + hαA−B;

(ii) |hαA − hαB | ≤ hαA−B + hαB−A;

(iii) Eα(hαA − hαB , h
α
A − hαB) ≤ 2K2

αEα(h, h)1/2Eα(hαA−B + hαB−A, h
α
A−B + hαB−A)1/2.

Proof Part (i) is a direct consequence of Proposition 1.1(ii) and (iii).

(ii) By (i), we get

hαA∩B ≤ hαA ≤ hαA∩B + hαA−B, hαA∩B ≤ hαB ≤ hαA∩B + hαB−A,

which implies that (ii) holds.

(iii) By (ii), Lemma 2.1(ii), the sector condition, and (2.3), we get

Eα(hαA − hαB , h
α
A − hαB)

= Eα(hαA, h
α
A − hαB) + Eα(hαB , h

α
B − hαA)

≤ Eα(hαA, h
α
A−B + hαB−A) + Eα(hαB , h

α
A−B + hαB−A)

≤ Kα

[
Eα(hαA, h

α
A)1/2 + Eα(hαB , h

α
B)1/2

]
Eα(hαA−B + hαB−A, h

α
A−B + hαB−A)1/2

≤ 2K2
αEα(h, h)1/2Eα(hαA−B + hαB−A, h

α
A−B + hαB−A)1/2.

Definition 2.4 ([19, Definition 2.11]) Let φ ∈ L2(E; m) such that 0 < φ ≤ 1 m-a.e.
and set g := G1φ. Then g is a 1-excessive function in D(E) and strictly positive m-a.e.
Define for U ⊂ E,U open,

capφ(U ) := (g1
U , φ)
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and for any A ⊂ E,

capφ(A) := inf{capφ(U ) |A ⊂ U ,U open}.

Theorem 2.5 Let A,A1,A2, . . . be a sequence of subsets of E. If capφ(An△A) → 0 as

n → ∞, where An△A := (An −A)∪ (A−An), then for any α > 0 and h ∈ D(E), hαAn

converges to hαA in D(E) as n → ∞.

Proof By Proposition 2.3(iii), it suffices to prove that if capφ(An) → 0 as n → ∞,

then hαAn
converges to 0 in D(E) as n → ∞. Now we assume that

lim
n→∞

capφ(An) = 0.

Step 1 Assume that h is α-excessive.

Note that supn≥1 Eα(hαAn
, hαAn

) ≤ K2
αEα(h, h) < ∞ by (2.3). Then by [20, I.

Lemma 2.12], for any subsequence {hαAnk
} of {hαAn

}, there exist a subsequence of

{hαAnk
} (we still denote it by {hαAnk

} for simplicity of notation) and h∗ ∈ D(E) such

that hαAnk
converges weakly to h∗ in D(E) as k → ∞. We will prove that h∗

= 0. Once

this is done, we obtain that hαAn
converges weakly to 0 in D(E) as n → ∞. Therefore,

by Proposition 1.1(ii) and (iii), we get

lim
n→∞

Eα(hαAn
, hαAn

) = lim
n→∞

Eα(hαAn
, h) = 0.

Since limk→∞ capφ(Ank
) = 0, we can choose a subsequence of {Ank

}, denoted by

{Ank ′
}, such that

∞∑

k=1

capφ(Ank ′
) <∞.

For k = 1, 2, . . . , define Bnk ′
:=

⋃∞
l=k Anl ′

. Then {Bnk ′
} is a decreasing sequence

such that for any k ≥ 1,Ank ′
⊂ Bnk ′

, and capφ(Bnk ′
) ≤

∑∞
l=k capφ(Anl ′

) ↓ 0. By

Definition 2.4, there exists a decreasing sequence {Cnk ′
} of open subsets of E such

that for any k ≥ 1,Bnk ′
⊂ Cnk ′

and capφ(Cnk ′
) ↓ 0. For k = 1, 2, . . . , define

Fk ′ := C c
nk ′

= E − Cnk ′
. Then {Fk ′} is an increasing sequence of closed subsets of E

with capφ(Fc
k ′) ↓ 0. By [19, Theorem 2.14], we know that {Fk ′} is an E-nest. Then

following the proof of [19, Lemma 2.10(i)], we can show that hαCn
k ′

converges to 0

in D(E) as k → ∞. Since hαCn
k ′

is decreasing and 0 ≤ hαAn
k ′

≤ hαBn
k ′

≤ hαCn
k ′

by

Proposition 2.3(i), we get h∗
= 0.

Step 2 Assume that h = u − v, where u and v are α-excessive functions in D(E).

Since h ≤ u, we have hαAn
≤ uαAn

by Proposition 1.1(iv). Then following the proof

of (2.3), we get

Eα(hαAn
, hαAn

) ≤ K2
αEα(uαAn

, uαAn
),

which together with Step 1 implies that hαAn
converges to 0 in D(E) as n → ∞.

Step 3 Assume that h is a general function in D(E).
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Note that G := {u − v | u, v are α-excessive functions in D(E)} is dense in D(E).

For any ε > 0, there exists g ∈ G such that

(2.8) Eα(h − g, h − g)1/2 < ε.

By Step 2, there exists N ∈ N such that for n ≥ N, we have

(2.9) Eα(gαAn
, gαAn

)1/2 < ε.

By the triangular inequality, (2.7)–(2.9), we obtain that for n ≥ N

Eα(hαAn
, hαAn

)1/2 ≤ Eα(hαAn
− gαAn

, hαAn
− gαAn

)1/2 + Eα(gαAn
, gαAn

)1/2

≤ K3/2
α

(
Eα(h, h)1/2 + Eα(g, g)1/2

) 1/2
Eα(h − g, h − g)1/4 + ε

≤ K3/2
α

(
2Eα(h, h)1/2 + ε

) 1/2
ε1/2 + ε,

which implies that hαAn
converges to 0 in D(E) as n → ∞.

Proposition 2.6 Let α > 0, h ∈ D(E), and An ⊂ E, An ↑ A. Then:

(i) hαAn
↑ hαA;

(ii) lim
n→∞

Eα(hαAn
− hαA, h

α
An

− hαA) = 0.

Proof Part (ii) can be proved as in [19, Lemma 2.21]. By Proposition 2.3(i), {hαAn
}

is an increasing sequence of nonnegative functions. Hence (ii) implies that (i) holds.

2.3 Operator S( · ,A, h)

In this subsection we fix A ⊂ E, h ∈ D(E) and consider the operator S( · ,A, h). It is

well known that (Gα)α>0 satisfies the following resolvent equations:

Gα = Gβ + (β − α)GαGβ , Gα = Gβ + (β − α)GβGα, ∀α, β > 0.

Theorem 2.7 Let A ⊂ E and h ∈ D(E). Then for β > α > 0, we have

(i) S
β
Ah ≤ SαAh ≤ S

β
Ah + (β − α)GαS

β
Ah;

(ii) S
β
Ah + (β − α)GβSαAh ≤ S

β
Ah + (β − α)GαS

β
Ah;

(iii) GαSαAh ≤ Gα[S
β
Ah + (β − α)GβSαAh].

Proof (i) The first inequality of Theorem 2.7(i) is a direct consequence of Propo-

sition 1.1(iii) and Lemma 2.1(iv). We now prove the second inequality of Theorem

2.7(i). For any w ∈ D(E) with w ≥ 0, we obtain by Lemma 2.1(ii) that

Eα(h
β
A + (β − α)Gαh

β
A,w) = Eα(h

β
A,w) + (β − α)Eα(Gαh

β
A,w)

=
[
Eβ(h

β
A,w) + (α− β)(h

β
A,w)

]
+ (β − α)(h

β
A,w)

= Eβ(h
β
A,w) ≥ 0,
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which implies that h
β
A + (β − α)Gαh

β
A is α-excessive by Lemma 2.1(ii). Obviously,

˜
(h
β
A + (β − α)Gαh

β
A) ≥ h̃ E-q.e. on A.

Then, by Proposition 1.1(iii), we get hαA ≤ h
β
A + (β−α)Gαh

β
A, i.e., , SαAh ≤ S

β
Ah + (β−

α)GαS
β
Ah.

(ii) By Theorem 2.7(i) and the resolvent equation, we get

GβSαAh ≤ GβS
β
Ah + (β − α)GβGαS

β
Ah

= GβS
β
Ah + GαS

β
Ah − GβS

β
Ah = GαS

β
Ah.

(2.10)

Hence (ii) holds.

(iii) Let f ∈ D(E) be an α-coexcessive function. Then, by the resolvent equation

and (2.10), we get

(SαAh − [S
β
Ah + (β − α)GβSαAh], f ) = Eα(Gα{SαAh − [S

β
Ah + (β − α)GβSαAh]}, f )

= Eα(GβSαAh − GαS
β
Ah, f ) ≤ 0.

Taking f = Ĝαu with u ∈ L2
+(E; m), hereafter L2

+(E; m) := {u ∈ L2(E; m) | u ≥ 0},

we obtain GαSαAh ≤ Gα[S
β
Ah + (β − α)GβSαAh].

Remark 2.8 (i) In general, we do not have

(2.11) SαAh = S
β
Ah + (β − α)GαS

β
Ah.

In fact, if (E,D(E)) is a symmetric Dirichlet form, then (2.11) holds if and only if

S
β
Ah = 0, which is proved as follows.

If S
β
Ah = 0, then (2.11) holds by Theorem 2.7(i). Suppose that (2.11) holds, i.e.,

hαA = h
β
A + (β − α)Gαh

β
A. By Proposition 1.1(i), we have Eα(hαA, h

β
A) ≥ Eα(hαA, h

α
A).

Hence

(2.12) Eα
(

h
β
A + (β − α)Gαh

β
A, h

β
A

)
≥

Eα
(

h
β
A + (β − α)Gαh

β
A, h

β
A + (β − α)Gαh

β
A

)
.

Note that

Eα(h
β
A + (β − α)Gαh

β
A, h

β
A)(2.13)

= Eα(h
β
A, h

β
A) + (β − α)Eα(Gαh

β
A, h

β
A)

=
[
Eβ(h

β
A, h

β
A) + (α− β)(h

β
A, h

β
A)
]

+ (β − α)(h
β
A, h

β
A) = Eβ(h

β
A, h

β
A)
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and

Eα(h
β
A + (β − α)Gαh

β
A, h

β
A + (β − α)Gαh

β
A)

= Eα(h
β
A, h

β
A) + (β − α)Eα(Gαh

β
A, h

β
A)

+ (β − α)Eα(h
β
A,Gαh

β
A) + (β − α)2Eα(Gαh

β
A,Gαh

β
A)

=
[
Eα(h

β
A, h

β
A) + (β − α)(h

β
A, h

β
A)
]

+ (β − α)
[
Eα(h

β
A,Gαh

β
A) + (β − α)(h

β
A,Gαh

β
A)
]

= Eβ(h
β
A, h

β
A) + (β − α)Eβ(h

β
A,Gαh

β
A).

(2.14)

By (2.12)–(2.14), we get Eβ(h
β
A,Gαh

β
A) ≤ 0. Since h

β
A is β-excessive and Gαh

β
A ≥ 0,

we have Eβ(h
β
A,Gαh

β
A) ≥ 0. Thus

(2.15) Eβ(h
β
A,Gαh

β
A) = 0.

Note that if (E,D(E)) is a symmetric Dirichlet form, then

Eβ(h
β
A,Gαh

β
A) = Eα(h

β
A,Gαh

β
A) + (β − α)(h

β
A,Gαh

β
A)

≥ Eα(h
β
A,Gαh

β
A) = (h

β
A, h

β
A).

(2.16)

Equations (2.15) and (2.16) imply that h
β
A = 0, i.e., S

β
Ah = 0.

(ii) We do not know if the following inequality holds:

(2.17) SαAh ≤ S
β
Ah + (β − α)GβSαAh.

Note that (2.17) is not a direct consequence of Theorem 2.7(iii). In fact, let (E,D(E))

be the Dirichlet form associated with the Brownian motion on R
1. Define

f := 2x2e−x2

, g := 2e−x2

.

Note that

(1 − L)(−e−x2

) =
(

1 −
△

2

)
(−e−x2

) = 2(x2 − 1)e−x2

,

where △ is the Laplacian operator. Hence

G1 f − G1g = (1 − L)−1
[

2(x2 − 1)e−x2]
= −e−x2

≤ 0.

However, we do not have f ≤ g.

Proposition 2.9 Let A ⊂ E and h ∈ D(E). Then for β > α > 0, we have

h
β
A ≤ (hαA)

β
A ≤ hαA ≤ (h

β
A)αA ≤ (hαA)

β
A + (β − α)Gα(hαA)

β
A

≤ h
β
A + 2(β − α)Gαh

β
A + (β − α)2GαGαh

β
A.

(2.18)
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Proof Since
˜
(hαA)

β
A ≥ h̃αA ≥ h̃ E-q.e. on A and (hαA)

β
A is β-excessive (thus (hαA)

β
A ∧ h

β
A

is β-excessive), by Proposition 1.1(iii), we have

(2.19) h
β
A ≤ (hαA)

β
A.

Since hαA is α-excessive (and thus β-excessive by Proposition 2.1(iv)), we obtain by

Proposition 1.1(iii) that

(2.20) (hαA)
β
A ≤ hαA.

Since
˜
(h
β
A)αA ≥ h̃

β
A ≥ h̃ E-q.e. on A and (h

β
A)αA is α-excessive, by Proposition 1.1(iii),

we have

(2.21) hαA ≤ (h
β
A)αA.

By Theorem 2.7(i), Proposition 1.1(iv), and the positivity preserving property of Gα,

we get

(2.22) (h
β
A)αU ≤ (h

β
A)
β
A + (β − α)Gα(h

β
A)
β
A ≤ (hαA)

β
A + (β − α)Gα(hαA)

β
A.

By (2.20) and the positivity preserving of Gα, we get

(2.23) (hαA)
β
A + (β − α)Gα(hαA)

β
A ≤ hαA + (β − α)GαhαA.

By Theorem 2.7(i) and the positivity preserving property of Gα, we get

hαA + (β − α)GαhαA(2.24)

≤
[

h
β
A + (β − α)Gαh

β
A

]
+ (β − α)Gα

[
h
β
A + (β − α)Gαh

β
A

]

= h
β
A + 2(β − α)Gαh

β
A + (β − α)2GαGαh

β
A.

Therefore, (2.18) holds by (2.19)–(2.24).

By Theorem 2.7, we can obtain the “continuity” of the operator S( · ,A, h) on

(0,∞).

Theorem 2.10 Let α > 0, A ⊂ E and h ∈ D(E). Then

(2.25) lim
β→α

E1(h
β
A − hαA, h

β
A − hαA) = 0.

Proof For β > α, by Theorem 2.7(i) and the positivity preserving property of Gα,

we get

0 ≤ hαA − h
β
A ≤ (β − α)Gαh

β
A ≤ (β − α)GαhαA,

which implies that limβ↓α h
β
A = hαA. For β ∈ (α/2, α), by Theorem 2.7(i) and the

resolvent equation, we get

0 ≤ h
β
A − hαA ≤ (α− β)GβhαA ≤ (α− β)G α

2
hαA,
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which implies that limβ↑α h
β
A = hαA. Therefore,

(2.26) lim
β→α

h
β
A = hαA.

For β > α, we obtain by Theorem 2.7(i), Lemma 2.1(ii), the positivity preserving

property of Gα, and (2.26) that

0 ≤ E1(hαA − h
β
A, h

α
A − h

β
A)

=

[
Eα(hαA, h

α
A − h

β
A) + (1 − α)(hαA, h

α
A − h

β
A)
]

−
[
Eβ(h

β
A, h

α
A − h

β
A) + (1 − β)(h

β
A, h

α
A − h

β
A)
]

≤ Eα(hαA, h
α
A − h

β
A) + (1 − α)(hαA, h

α
A − h

β
A) − (1 − β)(h

β
A, h

α
A − h

β
A)

≤ Eα(hαA, (β − α)Gαh
β
A) + (1 − α)(hαA, h

α
A − h

β
A) − (1 − β)(h

β
A, h

α
A − h

β
A)

≤ (β − α)Eα(hαA,GαhαA) + (1 − α)(hαA, h
α
A − h

β
A) − (1 − β)(h

β
A, h

α
A − h

β
A)

→ 0 as β → α,

which implies that limβ↓α E1(h
β
A − hαA, h

β
A − hαA) = 0. For β ∈ (α/2, α), by Theorem

2.7(i), Lemma 2.1(ii), the resolvent equation, (2.2), (2.4) and (2.26), we get

0 ≤ E1(hαA − h
β
A, h

α
A − h

β
A) = E1(h

β
A − hαA, h

β
A − hαA)

=

[
Eβ(h

β
A, h

β
A − hαA) + (1 − β)(h

β
A, h

β
A − hαA)

]

−
[
Eα(hαA, h

β
A − hαA) + (1 − α)(hαA, h

β
A − hαA)

]

≤ Eβ(h
β
A, h

β
A − hαA) + (1 + α + β)(hαA + h

β
A, h

β
A − hαA)

≤ Eβ(h
β
A, (α− β)GβhαA) + (1 + α + β)(hαA + h

α/2
A , hβA − hαA)

≤ (α− β)Eβ(h
β
A,G α

2
hαA) + (1 + α + β)(hαA + h

α/2
A , hβA − hαA)

≤ (α− β)(K α
2

+ 1)Eβ(h
β
A, h

β
A)1/2Eβ(G α

2
hαA,G α

2
hαA)1/2

+ (1 + α + β)(hαA + h
α/2
A , hβA − hαA)

≤ (α− β)(K α
2

+ 1)2Eβ(h, h)1/2Eα(G α
2
hαA,G α

2
hαA)1/2

+ (1 + α + β)(hαA + h
α/2
A , hβA − hαA)

≤ (α− β)(K α
2

+ 1)2Eα(h, h)1/2Eα(G α
2
hαA,G α

2
hαA)1/2

+ (1 + α + β)(hαA + h
α/2
A , hβA − hαA)

→ 0 as β → α,

which implies that limβ↑α E1(h
β
A − hαA, h

β
A − hαA) = 0. Therefore (2.25) holds.
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By Theorem 2.7, there exists an h∞
A ∈ L2(E; m) such that

(2.27) lim
β→∞

‖h
β
A − h∞

A ‖2 = 0.

Furthermore, we have the following proposition.

Proposition 2.11 Let α > 0, A ⊂ E and h ∈ D(E). If h ≤ 0 on Ac, then h∞
A ∈ D(E)

and h
β
A converges weakly to h∞

A in D(E) (w.r.t. the E1-norm) as β → ∞.

Proof By (2.27) and [20, I. Lemma 2.12], it suffices to show that

(2.28) sup
β≥α

Eα(h
β
A, h

β
A) <∞.

For β ≥ α, by (1.1) and the sector condition, we get

0 ≤ Eα(h
β
A, h

β
A)

= Eβ(h
β
A, h

β
A) − (β − α)(h

β
A, h

β
A)

≤ Eβ(h
β
A, h) − (β − α)(h

β
A, h

β
A)

=

[
Eα(h

β
A, h) + (β − α)(h

β
A, h)

]
− (β − α)(h

β
A, h

β
A)

≤ KαEα(h
β
A, h

β
A)1/2Eα(h, h)1/2 + (β − α)(h

β
A, h − h

β
A)

≤ KαEα(h
β
A, h

β
A)1/2Eα(h, h)1/2,

(2.29)

where in the last inequality we used the fact that h
β
A ≥ 0 on E and h

β
A ≥ h on A, and

the assumption that h ≤ 0 on Ac. It follows from (2.29) that

Eα(h
β
A, h

β
A) ≤ K2

αEα(h, h),

which implies (2.28).

Remark 2.12 (i) Equation (2.28) and thus Proposition 2.11 do not hold for gen-

eral h ∈ D(E). In fact, let A be a nearly Borel set of E and h ∈ D(E) be a bounded

τ -excessive function for some τ > 0. Then, by Kuwae [16, Theorem 4.4] (cf. Propo-

sition 3.1(ii)), we have

h̃
β
A(x) = Ex[e−βσA h̃(XσA

)], ∀β ≥ τ ,

where X is the right process associated with (E,D(E)) and σA := inf{t > 0 |Xt ∈ A}.

Note that limβ→∞ h̃
β
A = h̃ · 1Ar , where Ar denotes the set of regular points of A, i.e.,

Ar
= {x ∈ E | Px(σA > 0) = 0}. Hence h∞

A = h · 1Ar (m-a.e. on E). However, in

general, h · 1Ar might not belong to D(E). We give a concrete example as follows.
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Let (E,D(E)) be the Dirichlet form associated with the Brownian motion on R
1.

Then D(E) = H1,2(R
1), the (1,2)-Sobolev space on R

1, and

E(u, v) =
1

2

∫

R1

u ′v ′dx.

Define h(x) := e−|x| if |x| > 1 and h(x) := (3 − x2)e−1/2 otherwise. Then one can

check that h ∈ D(L) and (1/2 − L)h(x) = (5 − x2)1|x|≤1/4. Hence h is a bounded

1/2-excessive function of D(E). Let A be a finite closed subinterval of R
1. Then we

have h · 1Ar = h · 1A /∈ H1,2(R
1).

(ii) Let A be a nearly Borel set of E and h ∈ D(E) (not necessarily excessive). Then

for any α > 0, we have

h∞
A = lim

β→∞
h
β
A ≤ lim

β→∞
(|h|αE )

β
A = (|h|αE )1Ar .

3 Balayage of Measures

In this section we discuss the balayage of measures. First, we make some preparation

in Subsection 3.1.

3.1 Operators Hα
M and Ĥα

M

Suppose that (E,D(E)) is a quasi-regular semi-Dirichlet form on L2(E; m). Let M ⊂

E and D := Mc. Define FD := D(E)D := { f ∈ D(E) | f̃ = 0 E-q.e. on M}. Then, for

any α > 0, FD is a closed subspace of the Hilbert space D(E) (w.r.t. the Eα-norm).

Let u ∈ D(E). By applying [20, I.2.7, p. 18] to J(w) = Eα(u,w),w ∈ D(E), and

C = FD, we obtain a unique function πα
FD

(u) ∈ FD such that

Eα(u − παFD
(u),w) = 0, ∀w ∈ FD.

For α > 0 and u ∈ D(E), define Hα
Mu := u − πα

FD
(u). Denote Hα

M := {Hα
Mu | u ∈

D(E)}. Then for any u1 ∈ Hα
M , u2 ∈ FD, we have Eα(u1, u2) = 0 and each u ∈ D(E)

can be uniquely decomposed into u = u1 + u2, u1 ∈ Hα
M , u2 ∈ FD. Therefore, we

have the “orthogonal decomposition”

(3.1) D(E) = Hα
M ⊕ FD.

Proposition 3.1 (i) Hα
M is a continuous linear operator on D(E) with respect to the

Eα-norm.

(ii) If u ∈ D(E) is α-excessive, then Hα
Mu = uαM . In general, we have Hα

M f ≤ f αM for

any f ∈ D(E).

(iii) Hα
M is sub-Markovian: if u ∈ D(E) with 0 ≤ u ≤ 1, then 0 ≤ Hα

Mu ≤ 1.

(iv) Let M1 and M2 be two subsets of E with M1 ⊂ M2. Then, for any α > 0 and

u ∈ D(E), Hα
M1

Hα
M2

u = Hα
M2

Hα
M1

u = Hα
M1

u.
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Proof (i) It is easy to see that Hα
M is a linear operator. We now show that Hα

M is

continuous. By (3.1) and the sector condition, we have

Eα(Hα
Mu,Hα

Mu) = Eα(Hα
Mu, u) ≤ KαEα(Hα

Mu,Hα
Mu)1/2Eα(u, u)1/2,

which implies that

(3.2) Eα(Hα
Mu,Hα

Mu) ≤ K2
αEα(u, u).

It follows from (3.2) and the linearity of Hα
M that Hα

M is a continuous operator on

D(E).

(ii) If u ∈ D(E) isα-excessive, then by Proposition 1.1(ii) and (iii), we haveEα(u−
(u − uαM),w) = Eα(uαM ,w) = 0 for all w ∈ FD and u − uαM ∈ FD. Hence u − uαM =

πα
FD

(u). Therefore, Hα
Mu = u − πα

FD
(u) = uαM .

Let f ∈ D(E). We will show that Hα
M f ≤ f αM = SαM f . Note that

G := {g1 − g2 | g1, g2 are α-excessive functions in D(E)}

is dense in D(E). By (i) and Theorem 2.2(iii), it suffices to show that Hα
M f ≤ SαM f for

any f ∈ G. Suppose that f = f1 − f2 such that f1, f2 ∈ D(E) are both α-excessive.

Then, by the linearity of Hα
M and Theorem 2.2(ii), we get Hα

M f = Hα
M f1 − Hα

M f2 =

SαM f1 − SαM f2 ≤ SαM f .

(iii) Let u ∈ D(E) with 0 ≤ u ≤ 1. By (ii) and Theorem 2.2(i), we get Hα
Mu ≤

SαMu ≤ 1. For any ε > 0, we have (−u)/ε ≤ 1. Then Hα
M[(−u)/ε] ≤ SαM[(−u)/ε] ≤

1 ⇒ Hα
Mu ≥ −ε. Since ε is arbitrary, we get Hα

Mu ≥ 0.

(iv) Since M1 ⊂ M2, we have ˜Hα
M1

Hα
M2

u = H̃α
M2

u = ũ E-q.e. on M1. This together

with the fact that

Eα(Hα
M1

Hα
M2

u,w) = 0, ∀w ∈ FMc
1
,

implies that Hα
M1

Hα
M2

u = Hα
M1

u.

By the definition of Hα
M2

, we have ˜Hα
M2

Hα
M1

u = H̃α
M1

u E-q.e. on M2. For any

w ∈ FMc
2
⊂ FMc

1
, we obtain from the definition of Hα

M1
that

Eα(Hα
M1

u,w) = 0.

Hence Hα
M2

Hα
M1

u = Hα
M1

u.

Let (Ê,D(E)) be the dual form of (E,D(E)). Then (Ê,D(E)) is a quasi-regular

positive preserving form (cf. Ma–Röckner [21]). For any α > 0 and u ∈ D(E), there

exists a unique function π̂α
FD

(u) ∈ FD such that

Eα(w, u − π̂αFD
(u)) = 0, ∀w ∈ FD.

For α > 0 and u ∈ D(E), define ĤM
α u := u − π̂α

FD
(u). Then, for f , g ∈ D(E), we

have

Eα(Hα
M f , g) = Eα(Hα

M f ,Hα
Mg) = Eα(Hα

M f , Ĥα
Mg)

= Eα(Ĥα
M f , Ĥα

Mg) = Eα( f , Ĥα
Mg).

(3.3)
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Proposition 3.2 (i) Ĥα
M is a continuous linear operator on D(E) with respect to the

Eα-norm.

(ii) If u ∈ D(E) is α-coexcessive, then Ĥα
Mu = ûαM . In general, we have Ĥα

M f ≤ f̂ αM
for any f ∈ D(E). Here ĥαA denotes the α-cobalayaged function of h on M.

(iii) Ĥα
M is positivity preserving: if u ∈ D(E) with u ≥ 0, then Ĥα

Mu ≥ 0.

(iv) Let M1 and M2 be two subsets of E with M1 ⊂ M2. Then, for any α > 0 and

u ∈ D(E), Ĥα
M1

Ĥα
M2

u = Ĥα
M2

Ĥα
M1

u = Ĥα
M1

u.

Proof The proofs of (i), (ii), and (iv) are similar to that of Proposition 3.1. We only

prove (iii). Let u ∈ D(E) with u ≥ 0. Take f = Gαw with w ∈ L2
+(E; m). Then, by

(3.3), Proposition 3.1(ii), and Lemma 2.1(ii), we get

(w, Ĥα
Mu) = Eα( f , Ĥα

Mu) = Eα(Hα
M f , u) = Eα( f αM , u) ≥ 0.

Since w ∈ L2
+(E; m) is arbitrary, Ĥα

Mu ≥ 0.

From now until the end of this subsection, we suppose that M is a nearly Borel

set of E. Then one can check that (E,FD) is a semi-Dirichlet form on L2(D; m) in

the wide sense, which means that (E,FD) satisfies all conditions of the semi-Dirichlet

form on L2(D; m) except for the condition thatFD is dense in L2(D; m). Following the

proof of [20, I. Theorem 2.8], there exist unique (not necessarily strongly continuous)

contraction resolvents (GD
α)α>0 and (ĜD

α)α>0 on L2(D; m) such that GD
α(L2(D; m)),

ĜD
α(L2(D; m)) ⊂ FD, and

Eα(GD
α f , u) = ( f , u) = Eα(u, ĜD

α f ), ∀ f ∈ L2(D; m), u ∈ FD, α > 0.

Lemma 3.3 (i) For all α, β > 0, Hα
M − H

β
M = (β − α)GD

αH
β
M and Hα

M − H
β
M =

(β − α)GD
βHα

M .

(ii) For all α > 0, Gα = GD
α + Hα

MGα, where GD
α f := GD

α( f 1D) for f ∈ L2(E; m).

The similar results hold for (ĜD
α)α>0.

Proof (i) Let f ∈ D(E) and g ∈ FD. Then

Eα(H
β
M f + (β − α)GD

αH
β
M f , g) = Eα(H

β
M f , g) + (β − α)(H

β
M f , g)

= Eβ(H
β
M f , g) = 0

and
˜

H
β
M f + (β − α)GD

αH
β
M f = f̃ E-q.e. on M. Hence Hα

M = H
β
M + (β − α)GD

αH
β
M .

The second equality can be proved similarly.

(ii) Let f ∈ L2(E; m). Then Gα f − Hα
MGα f ∈ FD. For any g ∈ FD, we have

Eα(Gα f −Hα
MGα f , g) = ( f , g)−Eα(Hα

MGα f , g) = ( f , g) = ( f 1D, g) = Eα(GD
α f , g).

Hence Gα f − Hα
MGα f = GD

α f .

Corollary 3.4 Let β > α > 0 and f ∈ D(E) with f ≥ 0. Then Ĥ
β
M f ≤ Ĥα

M f .
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3.2 Characterization of µαB

From this point forward, we assume that (E,D(E)) is a regular semi-Dirichlet form

on L2(E; m).

Lemma 3.5 Each measure in S0 charges no set of zero capacity.

Proof Let A ∈ B(E) with capφ(A) = 0 and µ ∈ S0. We will show that µ(A) = 0.

Without loss of generality we assume that A is a compact subset of E. Then there ex-

ists a decreasing sequence of relatively compact open sets {Un} such that A ⊂ Un for

each n ∈ N and limn→∞ capφ(Un) = 0. By [19, Definition 2.9 and Theorem 2.14],

we know that {U c
n} is an E-nest, i.e.,

⋃
n≥1 D(E)U c

n
is dense in D(E).

We choose a v ∈ D(E) satisfying v ≥ 1 on U1. Then supn≥1 E1(v1
Un
, v1

Un
) ≤

K2
1E1(v, v) <∞ by (2.3). Since {v1

Un
} is decreasing, we obtain by [20, I. Lemma 2.12]

that v1
Un

converges weakly to some f ∈ D(E) as n → ∞. Let w ∈
⋃

n≥1 D(E)U c
n
. Then

E1( f ,w) = limn→∞ E1(v1
Un
,w) = 0. By the density of

⋃
n≥1 D(E)U c

n
in D(E), we get

f = 0.

Set gn = n(U1µ − nGn+1(U1µ)), n ∈ N. Then by Lemma 1.2 we know that

gn ≥ 0. Note that limn→∞(gn,w) = E1(U1µ,w) for any w ∈ D(E). In particular,

limn→∞(gn,w) =
∫

E
w(x)µ(dx) for any w ∈ C0(E) ∩ D(E). Hence gn · m converges

vaguely to µ as n → ∞. Therefore

µ(A) ≤ lim inf
n→∞

µ(Un) ≤ lim inf
n→∞

lim inf
r→∞

∫

Un

gr(x)m(dx)

≤ lim inf
n→∞

lim inf
r→∞

(gr, v
1
Un

) = lim inf
n→∞

E1(U1µ, v
1
Un

) = 0.

By Lemma 3.5, similar to [10, Theorem 2.2.2], we can show that for any µ ∈ S0

and any v ∈ D(E), ṽ ∈ L1(E;µ) and

(3.4) Eα(Uαµ, v) =

∫

E

ṽ(x)µ(dx), α > 0.

By (3.4), Proposition 3.1(ii) and (3.3), we obtain that for any f ∈ D(E)

µαB( f̃ ) = Eα(Uαµ
α
B , f ) = Eα((Uαµ)αB , f )

= Eα(Hα
BUαµ, f ) = Eα(Uαµ, Ĥ

α
B f ) =

∫

E

˜̂
Hα

B f (x)µ(dx).

(3.5)

Proposition 3.6 For any µ ∈ S0 and any α, β > 0, we have

Uαµ = Uβµ + (β − α)GαUβµ, Uαµ = Uβµ + (β − α)GβUαµ.

Proof Let v ∈ C0(E) ∩ D(E). Then

Eα(Uβµ + (β − α)GαUβµ, v)

= Eα(Uβµ, v) + (β − α)Eα(GαUβµ, v)

= [Eβ(Uβµ, v) + (α− β)(Uβµ, v)] + (β − α)(Uβµ, v)

= Eβ(Uβµ, v) =

∫

E

v(x)µ(dx) = Eα(Uαµ, v),
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which implies the first equality. The second equality can be proved similarly.

Let µ be a measure on (E,B(E)). We denote by suppq[µ] the quasi-support of µ,

i.e., the smallest quasi-closed set F such that µ(Fc) = 0.

Proposition 3.7 Let u ∈ D(E) and F be a quasi-closed set of E. Then the following

two conditions are equivalent:

(i) u = Uαµ for some µ ∈ S0 with suppq[µ] ⊂ F;

(ii) Eα(u, v) ≥ 0, ∀v ∈ D(E), ṽ ≥ 0 E-q.e. on F.

Proof (i) ⇒ (ii) is a direct consequence of (3.4). Suppose that (ii) holds. Then

u = Uαµ for some µ ∈ S0 by Lemma 1.2. By (3.4), we get

(3.6)

∫

Fc

ṽ(x)µ(dx) = 0, ∀v ∈ D(E)Fc .

Let ψ ∈ L2(Fc; m) such that 0 < ψ ≤ 1 m-a.e. on Fc and set w := GFc

1 ψ. Then

w ∈ D(E)Fc . By [19, Proposition 2.18(ii)], [16, Proposition 3.2], and considering the

part semi-Dirichlet form (E,D(E)Fc ), we know that w̃ > 0 E-q.e. on Fc. Then by

(3.6) and Lemma 3.5, we get µ(Fc) = 0. Therefore suppq[µ] ⊂ F, and the proof is

complete.

Let µ ∈ S0, B ⊂ E and α > 0. We now consider the balayaged measure µαB defined

in Section 1. Note that

Eα(Uαµ
α
B , v) = Eα((Uαµ)αB , v) ≥ 0, ∀v ∈ D(E), ṽ ≥ 0 E-q.e. on B.

By Proposition 3.7, we know that suppq[µαB] ⊂ B̄q, the quasi-closure of B.

Until the end of this subsection, we suppose that B ∈ B(E).

Theorem 3.8 For any µ ∈ S0, B ∈ B(E) and α > 0, we have µαB ≥ µ when restricted

on B.

Proof Let f ∈ D(E) with f ≥ 0. By (3.5), the fact that f − Ĥα
B f = π̂α

FBc
( f ) ∈ FBc

and the positivity preserving property of Ĥα
B , we get

∫

E

f̃ dµ−

∫

E

f̃ dµαB =

∫

E

f̃ dµ−

∫

E

˜̂
Hα

B f dµ =

∫

Bc

( f̃ − ˜̂
Hα

B f )dµ ≤

∫

Bc

f̃ dµ,

which implies that

(3.7)

∫

E

f̃ dµ ≤

∫

E

f̃ dµαB +

∫

Bc

f̃ dµ.

For any compact set F ⊂ B and ε > 0, there exists a relatively compact open set

G ⊃ F such that

(3.8) µαB(G) − µαB(F) < ε, µ(G) − µ(F) < ε.
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By the regularity of (E,D(E)), there exists u ∈ C0(E) ∩ D(E) such that 0 ≤ u ≤ 1,

supp[u] ⊂ G and u|F ≡ 1. Then, by (3.7) and (3.8), we get

µ(F) ≤

∫

E

udµ ≤

∫

E

udµαB +

∫

Bc

udµ

≤ µαB(G) +

∫

G−B

udµ ≤ µαB(G) +

∫

G−F

udµ

≤ µαB(G) + ε ≤ µαB(F) + 2ε.

Since F and ε are arbitrary, µαB ≥ µ when restricted on B.

Theorem 3.9 For any µ ∈ S0, B ∈ B(E) and α > 0, µαB is the measure in

S0(α,B, µ) := {ν ∈ S0 | ν ≥ µ when restricted on B and Ũαν ≥ Ũαµ E-q.e. on B}

with the smallest α-potential.

Proof By the definition of µαB and Proposition 1.1(iii), we have

ŨαµαB = ˜(Uαµ)αB ≥ Ũαµ E-q.e. on B,

which together with Theorem 3.8 implies that µαB ∈ S0(α,B, µ).

For any ν ∈ S0(α,B, µ), we have Ũαν ≥ Ũαµ E-q.e. on B, and Uαν ∧ (Uαµ)αB
is α-excessive. Hence by Proposition 1.1(iii), we get (Uαµ)αB ≤ Uαν, i.e., Uαµ

α
B ≤

Uαν.

Lemma 3.10 Let µ, ν ∈ S0 with µ ≤ ν. Then for any α > 0, we have Uαµ ≤ Uαν.

Proof Since µ ≤ ν, ν − µ ∈ S0. By (3.4), we have Uα(ν − µ) + Uαµ = Uαν.

Furthermore, by Lemmas 1.2 and 2.1, we have Uα(ν − µ) ≥ 0. Hence Uαµ ≤
Uαν.

Corollary 3.11 Let µ ∈ S0 and B ∈ B(E). If suppq[µ] ⊂ B, then for any α > 0, we

have

(i) µαB = µ;

(ii) Uαµ = (Uαµ)αB .

Proof (i) Note that µ ∈ S0(α,B, µ). By the assumption that suppq[µ] ⊂ B, we know

µ ≤ ν for any ν ∈ S0(α,B, µ). Then, by Lemma 3.10, we get Uαµ ≤ Uαν. Therefore

µαB = µ by Theorem 3.9.

(ii) By (i), we have Uαµ = Uαµ
α
B = (Uαµ)αB .

Corollary 3.12 Let µ ∈ S0 and B ∈ B(E) be a quasi-closed set of E. Then for any

α, β > 0, we have (µαB)
β
B = µαB .

Proof This is a direct consequence of Corollary 3.11 by noting that suppq[µαB] ⊂
B.

Remark 3.13 Some results from this section may also be obtained by the technique

of strongly supermedian functions and kernels developed in Feyel [6] and Beznea–

Boboc [1]. We thank an anonymous referee for pointing this out to us.
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3.3 Operator T( · , · , · )

In this subsection we investigate some properties of the balayaged operator T( · , · , · )

defined in (1.3). First, we fix α > 0, B ⊂ E and consider the operator S(α,B, ·) on S0.

Proposition 3.14 Let α > 0 and B ⊂ E.

(i) If ν1, ν2 ∈ S0, then (ν1 + ν2)αB = (ν1)αB + (ν2)αB .

(ii) Let µ, µ1, µ2, . . . be a sequence of measures in S0. If µ( f̃ ) = limn→∞ µn( f̃ ) for

any f ∈ D(E), then (µn)αB converges vaguely to µαB as n → ∞.

Proof (i) For any v ∈ C0(E) ∩ D(E), by (3.5), we have

(ν1 + ν2)αB(v) =

∫

E

˜̂
Hα

B vd(ν1 + ν2) =

∫

E

˜̂
Hα

B vdν1 +

∫

E

˜̂
Hα

B vdν2 =
(

(ν1)αB + (ν2)αB
)

(v),

which together with the regularity of (E,D(E)) implies that (ν1+ν2)αB = (ν1)αB +(ν2)αB .

(ii) For any v ∈ C0(E) ∩ D(E), by (3.5), we have

(µn)αB( f ) − µαB( f ) =

∫

E

˜̂
Hα

B f dµn −

∫

E

˜̂
Hα

B f dµ

→ 0 as n → ∞,

which together with the regularity of (E,D(E)) implies that (µn)αB converges vaguely

to µαB as n → ∞.

Second, we fix α > 0, µ ∈ S0 and consider the operator T(α, · , µ) on 2E.

Proposition 3.15 Let α > 0 and µ ∈ S0. Suppose that B1 ⊂ B2 ⊂ E. Then

(i) (µαB2
)αB1

= (µαB1
)αB2

= µαB1
;

(ii) if B1 ∈ B(E), then µαB2
≤ µαB1

when restricted on B1;

(iii) if B1,B2 ∈ B(E), then µαB2
≤ µαB1

+ µαB2−B1
when restricted on B2. Moreover, if B2

is quasi-closed, then µαB2
≤ µαB1

+ µαB2−B1
.

Proof (i) By the definition of balayage of measures and Proposition 1.1(v), we have

Uα

(
(µαB2

)α
B1

) = (Uαµ
α
B2

)αB1
=

(
(Uαµ)αB2

)α
B1

= (Uαµ)αB1
= Uαµ

α
B1
,

which together with (3.4) and the regularity of (E,D(E)) implies that (µαB2
)αB1

= µαB1
.

Similarly, we can prove that (µαB1
)αB2

= µαB1
.

Part (ii) holds by (i) and Theorem 3.8. Part (iii) is a direct consequence of (ii).

Theorem 3.16 Let α > 0 and µ ∈ S0. Suppose that one of the following two condi-

tions holds:

(i) {B,Bn, n ≥ 1} ⊂ 2E with limn→∞ capφ(Bn△B) = 0;

(ii) {Bn} ⊂ 2E,Bn ↑ B.

Then µαBn
converges vaguely to µαB as n → ∞.
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Proof Let f ∈ C0(E) ∩ D(E). Then, we obtain by (3.4) and Theorem 2.5 (resp.

Proposition 2.6) that, as n → ∞,

µαBn
( f ) = Eα(Uαµ

α
Bn
, f ) = Eα((Uαµ)αBn

, f )

→ Eα((Uαµ)αB , f )

= Eα(Uαµ
α
B , f ) = µαB( f ),

which together with the regularity of (E,D(E)) implies that µαBn
converges vaguely to

µαB as n → ∞.

Finally, we fix B ⊂ E, µ ∈ S0 and consider the operator T( · ,B, µ) on (0,∞).

Theorem 3.17 Let B ∈ B(E) and µ ∈ S0. Then for β > α > 0, we have

(i) µβB ≤ µαB ;

(ii) µαB ≤ µβB + (β − α)(Uαµ · m)
β
B and µαB ≤ µβB + (β − α)(Uβµ · m)αB .

Proof (i) Let f ∈ C0(E) ∩ D(E) with f ≥ 0. Then, by (3.5) and Corollary 3.4, we

get

µβB( f ) =

∫

E

˜̂
H
β
B f dµ ≤

∫

E

˜̂
Hα

B f dµ = µαB( f ),

which together with the regularity of (E,D(E)) implies that µβB ≤ µαB .

(ii) Set Q = Bc. Let f ∈ C0(E)∩D(E) with f ≥ 0. Then, by (3.5) and Lemma 3.3,

we get

µαB( f ) =

∫

E

˜̂
Hα

B f dµ =

∫

E

˜̂
H
β
B f dµ + (β − α)

∫

E

ĜQ
αĤ

β
B f dµ

= µβB( f ) + (β − α)Eα(Uαµ, Ĝ
Q
αĤ

β
B f )

≤ µβB( f ) + (β − α)Eα(Uαµ, ĜαĤ
β
B f )

= µβB( f ) + (β − α)Eα(GαUαµ, Ĥ
β
B f )

= µβB( f ) + (β − α)

∫

E

˜̂
H
β
B f d(Uαµ · m)

=
(
µβB + (β − α)(Uαµ · m)

β
B

)
( f ),

which together with the regularity of (E,D(E)) implies that µαB ≤ µβB +(β−α)(Uαµ ·

m)
β
B . The second equality can be proved similarly by using the formula Ĥα

B = Ĥ
β
B +

(β − α)ĜQ
β Ĥα

B (cf. Lemma 3.3).

Lemma 3.18 Let µ, ν ∈ S0 with µ ≤ ν. Then for any α > 0 and B ⊂ E, we have

µαB ≤ ναB .

Proof Let f ∈ C0(E) ∩ D(E) with f ≥ 0. Then, by (3.5), Proposition 3.2(iii) and

the assumption that µ ≤ ν, we get

µαB( f ) =

∫

E

˜̂
Hα

B f dµ ≤

∫

E

˜̂
Hα

B f dν = ναB ( f ),
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which together with the regularity of (E,D(E)) implies that µαB ≤ ναB .

Corollary 3.19 Let µ ∈ S0, B ∈ B(E) and β > α > 0. Then

(i) µβB ≤ (µβB)αB ≤ µαB and µβB ≤ (µαB)
β
B ≤ µαB ;

(ii) (µαB)
β
B ≤ (µβB)αB + (β − α)(Uαµ · m)

β
B and (µαB)

β
B ≤ (µβB)αB + (β − α)(Uβµ · m)αB ;

(iii) If B is a quasi-closed set of E, then (µβB)αB ≤ (µαB)
β
B.

Proof (i) By Proposition 3.15(i), Theorem 3.17(i), and Lemma 3.18, we get

µβB = (µβB)
β
B ≤ (µβB)αB ≤ (µαB)αB = µαB .

Similarly, we can prove µβB ≤ (µαB)
β
B ≤ µαB .

(ii) By Theorem 3.17, Lemma 3.18, Proposition 3.14(i), and Proposition 3.15(i),

we get

(µαB)
β
B ≤

(
µβB + (β − α)(Uαµ · m)

β
B

)β
B
= (µβB)

β
B + (β − α)((Uαµ · m)

β
B)
β
B

≤ (µβB)αB + (β − α)(Uαµ · m)
β
B.

The second inequality can be proved similarly.

(iii) By Corollary 3.12 and Theorem 3.17(i), we get (µβB)αB = µβB ≤ µαB = (µαB)
β
B .

Theorem 3.20 Let µ ∈ S0, B ∈ B(E) and α > 0. Then µβB converges vaguely to µαB
as β → α.

Proof For any β > α and f ∈ C0(E) ∩ D(E), by Theorem 3.17, we get

0 ≤ µαB( f ) − µβB( f ) ≤ (β − α)(Uαµ · m)
β
B( f ) ≤ (β − α)(Uαµ · m)αB( f ),

which together with the regularity of (E,D(E)) implies that µβB converges vaguely to

µαB as β ↓ α. For any β ∈ (α/2, α) and f ∈ C0(E) ∩ D(E), by Theorem 3.17, we get

0 ≤ µβB( f ) − µαB( f ) ≤ (α− β)(Uαµ · m)
β
B( f ) ≤ (α− β)(Uαµ · m)

α/2
B ( f ),

which together with the regularity of (E,D(E)) implies that µβB converges vaguely to

µαB as β ↑ α. Therefore µβB converges vaguely to µαB as β → α.

Remark 3.21 Let µ ∈ S0 and B ∈ B(E). By Theorem 3.17(i), we know that µαB is

decreasing as α increases. For any A ∈ B(E), define

µ∞
B (A) := lim

α→∞
µαB(A).

Then µ∞
B is a measure in S0, and µαB converges weakly to µ∞

B as α→ ∞.
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