We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this article is to extend the scope of the theory of regularity structures in order to deal with a large class of singular stochastic partial differential equations of the form
\begin{equation*}\partial_t u = \mathfrak{L} u+ F(u, \xi),\end{equation*}
where the differential operator $\mathfrak{L}$ fails to be elliptic. This is achieved by interpreting the base space $\mathbb{R}^{d}$ as a non-trivial homogeneous Lie group $\mathbb{G}$ such that the differential operator $\partial_t -\mathfrak{L}$ becomes a translation invariant hypoelliptic operator on $\mathbb{G}$. Prime examples are the kinetic Fokker-Planck operator $\partial_t -\Delta_v - v\cdot \nabla_x$ and heat-type operators associated with sub-Laplacians. As an application of the developed framework, we solve a class of parabolic Anderson type equations
\begin{equation*}\partial_t u = \sum_{i} X^2_i u + u (\xi-c)\end{equation*}
on the compact quotient of an arbitrary Carnot group.
We present necessary and sufficient conditions for an operator of the type sum of squares to be globally hypoelliptic on $T \times G$, where T is a compact Riemannian manifold and G is a compact Lie group. These conditions involve the global hypoellipticity of a system of vector fields on G and are weaker than Hörmander’s condition, while generalizing the well known Diophantine conditions on the torus. Examples of operators satisfying these conditions in the general setting are provided.
In this note, we prove two monotonicity formulas for solutions of $\Delta _H f = c$ and $\Delta _H f - \partial _t f = c$ in Carnot groups. Such formulas involve the right-invariant carré du champ of a function and they are false for the left-invariant one. The main results, theorems 1.1 and 1.2, display a resemblance with two deep monotonicity formulas respectively due to Alt–Caffarelli–Friedman for the standard Laplacian, and to Caffarelli for the heat equation. In connection with this aspect we ask the question whether an ‘almost monotonicity’ formula be possible. In the last section, we discuss the failure of the nondecreasing monotonicity of an Almgren type functional.
This article deals with kinetic Fokker–Planck equations with essentially bounded coefficients. A weak Harnack inequality for nonnegative super-solutions is derived by considering their log-transform and adapting an argument due to S. N. Kružkov (1963). Such a result rests on a new weak Poincaré inequality sharing similarities with the one introduced by W. Wang and L. Zhang in a series of works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic equations.
This work is devoted to the study of uncertainty principles for finite combinations of Hermite functions. We establish some spectral inequalities for control subsets that are thick with respect to some unbounded densities growing almost linearly at infinity, and provide quantitative estimates, with respect to the energy level of the Hermite functions seen as eigenfunctions of the harmonic oscillator, for the constants appearing in these spectral estimates. These spectral inequalities allow us to derive the null-controllability in any positive time for evolution equations enjoying specific regularizing effects. More precisely, for a given index $\frac {1}{2} \leq \mu <1$, we deduce sufficient geometric conditions on control subsets to ensure the null-controllability of evolution equations enjoying regularizing effects in the symmetric Gelfand–Shilov space $S^{\mu }_{\mu }(\mathbb {R}^{n})$. These results apply in particular to derive the null-controllability in any positive time for evolution equations associated to certain classes of hypoelliptic non-self-adjoint quadratic operators, or to fractional harmonic oscillators.
In Albano, Bove and Mughetti [J. Funct. Anal. 274(10) (2018), 2725–2753]; Bove and Mughetti [Anal. PDE 10(7) (2017), 1613–1635] it was shown that Treves conjecture for the real analytic hypoellipticity of sums of squares operators does not hold. Models were proposed where the critical points causing a non-analytic regularity might be interpreted as strata. We stress that up to now there is no notion of stratum which could replace the original Treves stratum. In the proposed models such ‘strata’ were non-symplectic analytic submanifolds of the characteristic variety. In this note we modify one of those models in such a way that the critical points are a symplectic submanifold of the characteristic variety while still not being a Treves stratum. We show that the operator is analytic hypoelliptic.
On a compact connected group $G$, consider the infinitesimal generator $-L$ of a central symmetric Gaussian convolution semigroup ${{\left( {{\mu }_{t}} \right)}_{t>0}}$. Using appropriate notions of distribution and smooth function spaces, we prove that $L$ is hypoelliptic if and only if ${{\left( {{\mu }_{t}} \right)}_{t>0}}$ is absolutely continuous with respect to Haar measure and admits a continuous density $x\mapsto {{\mu }_{t}}\left( x \right),t>0$, such that ${{\lim }_{t\to 0}}t\log {{\mu }_{t}}\left( e \right)=0$. In particular, this condition holds if and only if any Borel measure $u$ which is solution of $Lu=0$ in an open set $\Omega $ can be represented by a continuous function in $\Omega $. Examples are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.