No CrossRef data available.
Published online by Cambridge University Press: 06 December 2023
Bowers et al. propose to use controlled behavioral experiments when evaluating deep neural networks as models of biological vision. We agree with the sentiment and draw parallels to the notion that “neuroscience needs behavior.” As a promising path forward, we suggest complementing image recognition tasks with increasingly realistic and well-controlled task environments that engage real-world object recognition behavior.
Target article
Deep problems with neural network models of human vision
Related commentaries (29)
Explananda and explanantia in deep neural network models of neurological network functions
A deep new look at color
Beyond the limitations of any imaginable mechanism: Large language models and psycholinguistics
Comprehensive assessment methods are key to progress in deep learning
Deep neural networks are not a single hypothesis but a language for expressing computational hypotheses
Even deeper problems with neural network models of language
Fixing the problems of deep neural networks will require better training data and learning algorithms
For deep networks, the whole equals the sum of the parts
For human-like models, train on human-like tasks
Going after the bigger picture: Using high-capacity models to understand mind and brain
Implications of capacity-limited, generative models for human vision
Let's move forward: Image-computable models and a common model evaluation scheme are prerequisites for a scientific understanding of human vision
Modelling human vision needs to account for subjective experience
Models of vision need some action
My pet pig won't fly and I want a refund
Neither hype nor gloom do DNNs justice
Neural networks need real-world behavior
Neural networks, AI, and the goals of modeling
Perceptual learning in humans: An active, top-down-guided process
Psychophysics may be the game-changer for deep neural networks (DNNs) to imitate the human vision
Statistical prediction alone cannot identify good models of behavior
The model-resistant richness of human visual experience
The scientific value of explanation and prediction
There is a fundamental, unbridgeable gap between DNNs and the visual cortex
Thinking beyond the ventral stream: Comment on Bowers et al.
Using DNNs to understand the primate vision: A shortcut or a distraction?
Where do the hypotheses come from? Data-driven learning in science and the brain
Why psychologists should embrace rather than abandon DNNs
You can't play 20 questions with nature and win redux
Author response
Clarifying status of DNNs as models of human vision