Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T23:45:43.210Z Has data issue: false hasContentIssue false

Implications of capacity-limited, generative models for human vision

Published online by Cambridge University Press:  06 December 2023

Joseph Scott German
Affiliation:
Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA [email protected]
Robert A. Jacobs
Affiliation:
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA [email protected] https://www2.bcs.rochester.edu/sites/jacobslab/people.html

Abstract

Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemi, A. A., Poole, B., Fischer, I., Dillon, J. V., Saurous, R. A., & Murphy, K. (2017). An information-theoretic analysis of deep latent variable models. arXiv preprint arXiv:1711.00464. Retrieved from https://arxiv.org/pdf/1711.00464v1.pdfGoogle Scholar
Alemi, A. A., Poole, B., Fischer, I., Dillon, J. V., Saurous, R. A., & Murphy, K. (2018). Fixing a broken ELBO. arXiv preprint arXiv:1711.00464v3. Retrieved from https://arxiv.org/pdf/1711.00464v3.pdfGoogle Scholar
Ballé, J., Laparra, V., & Simoncelli, E. P. (2016). End-to-end optimized image compression. arXiv preprint arXiv:1611.01704. Retrieved from https://arxiv.org/pdf/1611.01704.pdfGoogle Scholar
Bates, C. J., & Jacobs, R. A. (2020). Efficient data compression in perception and perceptual memory. Psychological Review, 127, 891917.CrossRefGoogle ScholarPubMed
Bates, C. J., & Jacobs, R. A. (2021). Optimal attentional allocation in the presence of capacity constraints in uncued and cued visual search. Journal of Vision, 21(5), 3, 1–23.CrossRefGoogle ScholarPubMed
Bates, C. J., Lerch, R. A., Sims, C. R., & Jacobs, R. A. (2019). Adaptive allocation of human visual working memory capacity during statistical and categorical learning. Journal of Vision, 19(2), 11, 1–23.CrossRefGoogle ScholarPubMed
Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115147.CrossRefGoogle ScholarPubMed
Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., … Lerchner, A. (2018). Understanding disentangling in β-VAE. arXiv preprint arXiv:1804.03599. Retrieved from https://arxiv.org/pdf/1804.03599.pdfGoogle Scholar
Erdogan, G., & Jacobs, R. A. (2017). Visual shape perception as Bayesian inference of 3D object-centered shape representations. Psychological Review, 124, 740761.CrossRefGoogle ScholarPubMed
German, J. S., & Jacobs, R. A. (2020). Can machine learning account for human visual object shape similarity judgments? Vision Research, 167, 8799.CrossRefGoogle ScholarPubMed
Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science (New York, N.Y.), 350(6266), 13321338.CrossRefGoogle ScholarPubMed
Nash, C., & Williams, C. K. I. (2017). The shape variational autoencoder: A deep generative model of part-segmented 3D objects. Eurographics Symposium on Geometry Processing, 36(5), 111.Google Scholar
Sims, C. R., Jacobs, R. A., & Knill, D. C. (2012). An ideal observer analysis of visual working memory. Psychological Review, 119, 807830.CrossRefGoogle ScholarPubMed