Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T00:03:00.814Z Has data issue: false hasContentIssue false

A deep new look at color

Published online by Cambridge University Press:  06 December 2023

Jelmer Philip de Vries
Affiliation:
Department of Psychology, Justus Liebig Universitat, Giessen, Germany [email protected]; [email protected] www.jelmerdevries.com; https://www.allpsych.uni-giessen.de/karl/;
Alban Flachot
Affiliation:
Department of Psychology, York University, Toronto, ON, Canada [email protected];
Takuma Morimoto
Affiliation:
Department of Psychology, Justus Liebig Universitat, Giessen, Germany [email protected]; [email protected] www.jelmerdevries.com; https://www.allpsych.uni-giessen.de/karl/; Department of Experimental Psychology, University of Oxford, Oxford, UK [email protected]; https://sites.google.com/view/tmorimoto
Karl R. Gegenfurtner
Affiliation:
Department of Psychology, Justus Liebig Universitat, Giessen, Germany [email protected]; [email protected] www.jelmerdevries.com; https://www.allpsych.uni-giessen.de/karl/;

Abstract

Bowers et al. counter deep neural networks (DNNs) as good models of human visual perception. From our color perspective we feel their view is based on three misconceptions: A misrepresentation of the state-of-the-art of color perception; the type of model required to move the field forward; and the attribution of shortcomings to DNN research that are already being resolved.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115147. https://doi.org/10.4324/9781351156288-24CrossRefGoogle ScholarPubMed
Conway, B. R. (2018). The organization and operation of inferior temporal cortex. Annual Review of Vision Science, 4(1), 381402. https://doi.org/10.1146/annurev-vision-091517-034202CrossRefGoogle ScholarPubMed
de Vries, J. P., Akbarinia, A., Flachot, A., & Gegenfurtner, K. R. (2022). Emergent color categorization in a neural network trained for object recognition. eLife, 11, e76472. https://doi.org/10.7554/eLife.76472CrossRefGoogle Scholar
Flachot, A., Akbarinia, A., Schütt, H. H., Fleming, R. W., Wichmann, F. A., & Gegenfurtner, K. R. (2022). Deep neural models for color classification and color constancy. Journal of Vision, 22(4), 124. https://doi.org/10.1167/jov.22.4.17CrossRefGoogle ScholarPubMed
Flachot, A., & Gegenfurtner, K. R. (2018). Processing of chromatic information in a deep convolutional neural network. Journal of the Optical Society of America A, 35(4), B334. https://doi.org/10.1364/josaa.35.00b334CrossRefGoogle ScholarPubMed
Flachot, A., & Gegenfurtner, K. R. (2021). Color for object recognition: Hue and chroma sensitivity in the deep features of convolutional neural networks. Vision Research, 182, 89100. https://doi.org/10.1016/j.visres.2020.09.010CrossRefGoogle ScholarPubMed
Garg, A. K., Li, P., Rashid, M. S., & Callaway, E. M. (2019). Color and orientation are jointly coded and spatially organized in primate primary visual cortex. Science (New York, N.Y.), 364(6447), 12751279. https://doi.org/10.1126/science.aaw5868CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4(7), 563572. https://doi.org/10.1038/nrn1138CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., & Kiper, D. C. (2003). Annual review of neuroscience, 26, 181206. https://doi.org/10.1146/annurev.neuro.26.041002.131116CrossRefGoogle Scholar
Hansen, T., & Gegenfurtner, K. R. (2009). Independence of color and luminance edges in natural scenes. Visual Neuroscience, 26(1), 3549. https://doi.org/10.1017/S0952523808080796CrossRefGoogle ScholarPubMed
Hansen, T., & Gegenfurtner, K. R. (2017). Color contributes to object-contour perception in natural scenes. Journal of Vision, 17(3), 119. https://doi.org/10.1167/17.3.14CrossRefGoogle ScholarPubMed
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93(3), 480490. https://doi.org/10.1016/j.neuron.2016.12.041CrossRefGoogle ScholarPubMed
Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7(11), 34163468. https://doi.org/10.1523/jneurosci.07-11-03416.1987CrossRefGoogle ScholarPubMed
Ponting, S., Morimoto, T., & Smithson, H. (2023). Modelling surface color discrimination under different lighting environments using image chromatic statistics and convolutional neural networks. Journal of the Optical Society of America A, 40(3), A149A159. https://doi.org/10.1364/josaa.479986CrossRefGoogle ScholarPubMed
Rafegas, I., & Vanrell, M. (2018). Color encoding in biologically-inspired convolutional neural networks. Vision Research, 151, 717. https://doi.org/10.1016/j.visres.2018.03.010CrossRefGoogle ScholarPubMed
Rafegas, I., Vanrell, M., Alexandre, L. A., & Arias, G. (2020). Understanding trained CNNs by indexing neuron selectivity. Pattern Recognition Letters, 136, 318325.CrossRefGoogle Scholar
Shamay-Tsoory, S. G., & Mendelsohn, A. (2019). Real-life neuroscience: An ecological approach to brain and behavior research. Perspectives on Psychological Science, 14(5), 841859. https://doi.org/10.1177/1745691619856350CrossRefGoogle ScholarPubMed
Shapley, R., & Hawken, M. J. (2011). Color in the cortex: Single- and double-opponent cells. Vision Research, 51(7), 701717. https://doi.org/10.1016/j.visres.2011.02.012CrossRefGoogle ScholarPubMed
Siuda-Krzywicka, K., & Bartolomeo, P. (2020). What cognitive neurology teaches us about our experience of color. Neuroscientist, 26(3), 252265. https://doi.org/10.1177/1073858419882621CrossRefGoogle ScholarPubMed
Witzel, C., & Gegenfurtner, K. R. (2018). Color perception: Objects, constancy, and categories. Annual Review of Vision Science, 4, 475499.CrossRefGoogle ScholarPubMed
Wright, A. A., & Cumming, W. W. (1971). Color-naming functions for the pigeon. Journal of the Experimental Analysis of Behavior, 15(1), 717.CrossRefGoogle ScholarPubMed