Currently, methods for mapping agricultural crops have been predominantly developed for a number of the most important and popular crops. These methods are often based on remote sensing data, scarce information about the location and boundaries of fields of a particular crop, and involve analyzing phenological changes throughout the growing season by utilizing vegetation indices, e.g., the normalized difference vegetation index. However, this approach encounters challenges when attempting to distinguish fields with different crops growing in the same area or crops that share similar phenology. This complicates the reliable identification of the target crops based solely on vegetation index patterns. This research paper aims to investigate the potential of advanced techniques for crop mapping using satellite data and qualitative information. These advanced approaches involve interpreting features in satellite images in conjunction with cartographic, statistical, and climate data. The study focuses on data collection and mapping of three specific crops: lavender, almond, and barley, and relies on various sources of information for crop detection, including satellite image characteristics, regional statistical data detailing crop areas, and phenological information, such as flowering dates and the end of the growing season in specific regions. As an example, the study attempts to visually identify lavender fields in Bulgaria and almond orchards in the USA. We test several state-of-the-art methods for semantic segmentation (U-Net, UNet++, ResUnet). The best result was achieved by a ResUnet model (96.4%). Furthermore, the paper explores how vegetation indices can be leveraged to enhance the precision of crop identification, showcasing their advanced capabilities for this task.