We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a pair consisting of a smooth 3-fold defined over an algebraically closed field and a “general” ${\Bbb R}$-ideal. We show that the minimal log discrepancy (“mld” for short) of every such a pair is computed by a prime divisor obtained by at most two weighted blow-ups. This bound is regarded as a weighted blow-up version of Mustaţă–Nakamura’s conjecture. We also show that if the mld of such a pair is not less than 1, then it is computed by at most one weighted blow-up. As a consequence, ACC of mld holds for such pairs.
In this paper we take up the classical sup-norm problem for automorphic forms and view it from a new angle. Given a twist minimal automorphic representation $\pi$ we consider a special small $\mathrm{GL}_2(\mathbb{Z}_p)$-type V in $\pi$ and prove global sup-norm bounds for an average over an orthonormal basis of V. We achieve a non-trivial saving when the dimension of V grows.
We prove an equality, predicted in the physical literature, between the Jeffrey–Kirwan residues of certain explicit meromorphic forms attached to a quiver without loops or oriented cycles and its Donaldson–Thomas type invariants.
In the special case of complete bipartite quivers we also show independently, using scattering diagrams and theta functions, that the same Jeffrey–Kirwan residues are determined by the the Gross–Hacking–Keel mirror family to a log Calabi–Yau surface.
On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros $1/2+i\gamma$ of the Riemann zeta function, we show that the sequence
where the ${\gamma }$ are arranged in increasing order, is uniformly distributed modulo one. Here a and b are real numbers with $a<b$, and $m_\gamma$ denotes the multiplicity of the zero $1/2+i{\gamma }$. The same result holds when the ${\gamma }$’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers $\gamma (\!\log T)/2\pi$ with ${\gamma }\in \Gamma_{[a, b]}$ and $0<{\gamma }\leq T$.
Given any polynomial in two variables of degree at most three with rational integer coefficients, we obtain a new search bound to decide effectively if it has a zero with rational integer coefficients. On the way we encounter a natural problem of estimating singular points. We solve it using elementary invariant theory but an optimal solution would seem to be far from easy even using the full power of the standard Height Machine.
We prove that the Hodge–Tate spectral sequence of a proper smooth rigid analytic variety can be reconstructed from its infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology through the Bialynicki–Birula map. We also give a new proof of the torsion-freeness of the infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology independent of Conrad–Gabber spreading theorem, and a conceptual explanation that the degeneration of Hodge–Tate spectral sequences is equivalent to that of Hodge–de Rham spectral sequences.
For odd n we construct a path $\rho\;:\;\thinspace \Pi_1(S) \to SL(n\mathbb{R})$ of discrete, faithful, and Zariski dense representations of a surface group such that $\rho_t(\Pi_1(S)) \subset SL(n,\mathbb{Q})$ for every $t\in \mathbb{Q}$.