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Abstract

We prove that the Hodge–Tate spectral sequence of a proper smooth rigid analytic variety
can be reconstructed from its infinitesimal B+

dR-cohomology through the Bialynicki–Birula
map. We also give a new proof of the torsion-freeness of the infinitesimal B+

dR-cohomology
independent of Conrad–Gabber spreading theorem, and a conceptual explanation that the
degeneration of Hodge–Tate spectral sequences is equivalent to that of Hodge–de Rham
spectral sequences.

2020 Mathematics Subject Classification: 14G45 (Primary); 14F40, 14G45,
14G22 (Secondary)

1. Introduction

Let X be a proper smooth rigid analytic variety over a complete algebraically closed non-
archimedean field C of mixed characteristic p. It is well known that there is a Hodge–Tate
spectral sequence

Ep,q
2 = Hp(X, �q

X)(−q) =⇒ Hp+q
ét (X, Qp) ⊗Qp C

from Hodge cohomology groups converging to the p-adic étale cohomology. The Hodge–
Tate spectral sequences play an important role in some of the recent breakthroughs in
arithmetic geometry, namely it is used to define Hodge–Tate period maps as in [Sch15],
[CS17] and [CS19], which is applied to prove the modularity theorem, and many other
important results in [ACC+18].

The spectral sequence is constructed from the truncated filtration τ≤qRν∗ÔX on Rν∗ÔX ,
where

ν:Xproét −→ Xét

is the structure map from the proétale site to the étale site of X, and ÔX is the p-adic
completion of the structure sheaf ν∗OXét . In other words, it is the Grothendieck spec-
tral sequence associated to the composite derived functor R�(Xét, −) ◦ Rν∗ evaluated on
ÔX . The crucial ingredients in the construction are that we have canonical isomorphisms
Hi(Xproét, ÔX) ∼= Hi(Xét, Qp) ⊗Qp C, and Rqν∗ÔX ∼= �

q
Xét

(−q), see [Sch12, section 3·3].
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On the other hand, we know from [BMS18, section 13] (see also [Guo21a] for a site
theoretic construction of it) that there is a B+

dR-cohomology theory

Hi
crys(X/B+

dR)

associated to X, where B+
dR is the ξ -adic completion of W(OC�)[1/p], with C� the tilt of C

and ξ a generator of the kernel of the canonical morphism W(OC�) →OC. They are finite
free B+

dR-modules equipped with canonical morphisms

Hi
crys(X/B+

dR) −→ Hi
ét(X, Qp) ⊗Qp B

+
dR

which induces identifications

Hi
crys(X/B+

dR) ⊗B+
dR
BdR ∼= Hi

ét(X, Qp) ⊗Qp BdR,

where BdR: =B+
dR[1/ξ ].

We view the above identification as providing a B+
dR-lattice Hi

crys(X/B+
dR) in the

BdR-vector space Hi
ét(X, Qp) ⊗Qp BdR. Note that there is another natural B+

dR-lattice
Hi

ét(X, Qp) ⊗Qp B
+
dR inside it, and the relative position of the two lattices is measured by

(Hi
crys(X/B+

dR) ∩ ξm(Hi
ét(X, Qp) ⊗Qp B

+
dR))/(Hi

crys(X/B+
dR) ∩ ξm+1(Hi

ét(X, Qp) ⊗Qp B
+
dR))

viewed as subspaces Film of

ξm(Hi
ét(X, Qp) ⊗Qp B

+
dR)/ξm+1(Hi

ét(X, Qp) ⊗Qp B
+
dR) = Hi

ét(X, Qp) ⊗Qp C(m).

The main result of this paper confirms that this is the same filtration induced by Hodge–Tate
spectral sequence on Hi

ét(X, Qp) ⊗Qp C.

THEOREM 1·1. The filtration Film(−m) is the same as the filtration induced by Hodge–
Tate spectral sequence on Hi

ét(X, Qp) ⊗Qp C. More precisely, Film(−m) is equal to the image
of

Hi(Xét, τ≤mRν∗ÔX) −→ Hi(Xét, Rν∗ÔX) ∼= Hi(Xproét, ÔX) ∼= Hi
ét(X, Qp) ⊗Qp C,

where τ≤m is the canonical truncation up to cohomological degree m, and we have a
canonical identification

Film(−m)/Film+1(−1 − m) ∼= Hi(X, �m
X )(−m).

The result is well known among experts. For example, the interpretation in terms of the
Bialynicki–Birula map and the theory in [Sch13] (to be explained in the following remarks)
is used in one of the constructions of Hodge–Tate period maps as in [CS17] and [Han16].
However, to the best of the author’s knowledge, the formulation as in the theorem in terms of
Hi

crys(X/B+
dR) is not explicit in the literature. It gives a new construction of the Hodge–Tate

filtration in terms of the B+
dR-cohomology Hi

crys(X/B+
dR).1

1 The B+
dR-cohomology is new only for rigid analytic varieties defined over C. If the space is defined over a

discretely valued field, it essentially reduced to the theory in [Sch13].
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The proof is to study a refinement of the decalage functor Lη introduced in [BMS18]. It
is a functor

LηI,•:D(OT ) −→ FD(OT )

from the derived category of a ringed topos T to its filtered derived category. Its graded
pieces can be identified, so does its reduction mod I . As for the functor Lη in [BMS18],
LηI,• is also a special case of the functors considered in [BO78, definition 8·6] with p
replaced by I .2

As a byproduct of our treatment of the Hodge–Tate filtration, we give a new proof of the
torsion-freeness of Hi

crys(X/B+
dR) that is independent of Conrad–Gabber. It is complementary

to the proofs found in the literature (see [BMS18, 13·19] and [Guo21a, theorem 7·3·5]),
which to the best of the author’s knowledge all make use of Conrad–Gabber.

Moreover, we provide a conceptual explanation of the equivalence between degeneration
of Hodge–de Rham and Hodge–Tate spectral sequence, which is implicit in the proof of
[BMS18, theorem 13·3].

Remark 1·2. The statement of the theorem includes that the Hodge–Tate spectral sequence
degenerates at E2. This is actually used as an input in the proof. More precisely, we use
the degeneration of both Hodge–de Rham and Hodge–Tate spectral sequences3, which
is proved in [BMS18, theorem 13·3], see also [Guo21a, theorem 7·3·5], and [Guo22,
theorem 1·1·3]. Both approaches depend on Conrad–Gabber spreading theorem. It would
be interesting if we can find a direct proof of the degeneration.

Remark 1·3. The B+
dR-lattices in Hi

ét(X, Qp) ⊗Qp BdR are parameterised by the C-points of

B+
dR-affine Grassmannian Gr

B+
dR

GLn
as defined in [CS17, definition 3·4·1], see [SW20, lecture

19] as well, where n is the dimension of Hi
ét(X, Qp). The subspaces Film(−m) are param-

eterised by the (C-points of) flag variety with respect to the vector space Hi
ét(X, Qp) ⊗Qp

C, and Film(−m) associated to the lattice Hi
crys(X/B+

dR) is exactly its image under the
Bialynicki–Birula map as defined in [CS17, proposition 3·4·3] from the affine Grassmannian
to the flag variety.4

Remark 1·4. When X is defined over a discretely valued field, we know from the results in
[BMS18, section 13] that Hi

crys(XC/B+
dR) can be computed as the de Rham cohomology of

X base changed to B+
dR. Then the theorem follows from [Sch13, theorem 8·4].

Moreover, using the spreading theorem of Conrad–Gabber (see [BMS18, corollary
13·16]), we can deduce the theorem from [Sch13, theorem 8·8, and proposition 7·9]. Note
that the condition of theorem 8·8. in loc.cit. is proved in [SW20, theorem 10·5·1] and the
paragraph following it. We believe that it is more natural to prove the theorem directly from
the very construction of Hi

crys(X/B+
dR), thereby avoiding the use of theory of OB+

dR-modules

2 The author would like to thank the anonymous referee for pointing this out.
3 Indeed, we provide two proofs, one of which only uses the degeneration of Hodge–Tate spectral sequences.
4 To be fully precise, the Bialynicki–Birula map is only defined on an open Schubert cell of the affine
Grassmannian, so we need to first fix the type of the relative position between lattices (which also specifies
the flag variety) to actually have the Bialynicki–Birula map, but this creates no problem.
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in [Sch13]. However, we still cannot avoid Conrad–Gabber in our treatment, see Remark
1·2.

2. Recollections

Let us first recall the construction of Hi
crys(X/B+

dR). The original construction in [BMS18]
is to construct an explicit complex for each small affinoid X, and then glue. In [Guo21a],
Guo defined an infinitesimal site and reconstruct Hi

crys(X/B+
dR) as the cohomology of the

structure sheaf on this site. Further, the B+
dR-prismatic site is introduced in [Guo21b], which

unifies the previous constructions. We will use the formulation of B+
dR-prismatic site for

convenience, but the original construction of [BMS18] can also be invoked here.
For our purpose, we only need to know that Hi

crys(X/B+
dR) can be computed as the

cohomology of a sheaf of complexes

Lηξ	X/B+
dR

on the étale site Xét of X, where Lηξ is the decalage functor with respect to ξ as defined in
[BMS18, section 6], and 	X/B+

dR
is the sheaf of complexes5 of B+

dR-modules on Xét which

sends every affinoid to its derived B+
dR-prismatic cohomology (with respect to the structure

sheaf) as defined in [Guo21b, section 2]. In other words, we have

Hi
crys(X/B+

dR) ∼= Ri�(Xét, Lηξ	X/B+
dR

), (1)

which is [Guo21b, theorem 6·0·1].
It is proved in [Guo21b, theorem 5·1·1] and the discussion before it that we have a

canonical quasi-isomorphism

Lηξ	X/B+
dR

⊗L
B+

dR
B+

dR/ξ ∼= H•(	X/B+
dR

/ξ ) ∼= �•
X , (2)

where the first isomorphism is [BMS18, proposition 6·12], and �•
X is the de Rham complex

of X.
Moreover, there is a natural quasi-isomorphism

R�(Xét, 	X/B+
dR

) ∼= R�(Xproét, B
+
dR) ∼= R�(Xét, Qp) ⊗Qp B

+
dR, (3)

where B+
dR is, by abuse of notation, the B+

dR-period sheaf on Xproét as defined in [Sch13,
definition 6·1]. The first isomorphism is [Guo21b, theorem 7·2·1], the second is in the proof
of [Sch13, theorem 8·4]. The canonical comparison morphism

Hi
crys(X/B+

dR) −→ Hi
ét(X, Qp) ⊗Qp B

+
dR

is induced from the canonical map

ι:Lηξ	X/B+
dR

−→ 	X/B+
dR

together with the identification. Note that ι exists because 	X/B+
dR

∈ D≥0 and H0(	X/B+
dR

) is
ξ -torsion-free.

5 In the ∞-catogorical sense.
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Lastly, it follows from the proof of [Guo21b, theorem 7·2·1] that we have a natural quasi-
isomorphism

	X/B+
dR

: = 	X/B+
dR

⊗L
B+

dR
B+

dR/ξ ∼= Rν∗ÔX (4)

where ν:Xproét → Xét and ÔX are as in the introduction.

3. A refinement of Lη-functor

In this section, we construct a refinement of the decalage functor Lη introduced in
[BMS18], which is a special case of the construction in [BO78, definition 8·6] with p
replaced by I . We work in the same setting as [BMS18].

Let (T , OT ) be a ringed topos, and D(OT ) the derived category of OT -modules. Let I ⊂
OT be an invertible ideal sheaf.

Recall that a complex K• of OT -modules is said to be I-torsion-free if the canonical map
I ⊗ Ki → Ki is injective for every i, and we can define a complex (ηIK)• with terms

(ηIK)i = {x ∈ Ki|dx ∈ IKi+1} ⊗OT I⊗i,

where K• is a I-torsion-free complex, and there is a natural differential map making ηIK•
a complex. By [BMS18, lemma 6·4], we have

Hi(ηIK•) ∼= (Hi(K•)/Hi(K•)[I]) ⊗OT I⊗i,

so we can derive the construction to obtain a functor

LηI :D(OT ) −→ D(OT ).

Definition 3·1. Let m ∈Z, and K• an I-torsion-free complex of OT -modules. Define a
new complex (ηI,mK)• with terms

(ηI,mK)i =
{

(ηIK)i i ≥ m

Ki ⊗OT I⊗m i < m.

The differential is inherited from that of ηIK (resp. K• (⊗IdI⊗m)) for i ≥ m (resp. i < m − 1).
For i = m − 1, the differential

d:Km−1 ⊗OT I⊗m −→ (ηIK)m = {x ∈ Km|dx ∈ IKm+1} ⊗OT I⊗m

is defined to be d ⊗ IdI⊗m .

We first compute the cohomology of ηI,mK•.

LEMMA 3·2. Let K• be an I-torsion-free complex, then we have a natural isomorphism

Hi(ηI,mK•) ∼=
{

Hi(ηIK•) i > m

Hi(K•) ⊗OT I⊗m i ≤ m.

Proof. This is obvious except for i = m, m − 1. For i = m − 1, we simply note that (ηIK)m

is a subspace of Km ⊗OT I⊗m, so the kernel of d at m − 1 is the same as Zm−1(K•) ⊗OT I⊗m,
the cocycles of K• twisted by I⊗m.
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For i = m, we observe that the cocycle space is Zm(K•) ⊗OT I⊗m, and the coboundary is
exactly Bm(K•) ⊗OT I⊗m.

We can now dervie the ηI,m-construction to obtain a functor

LηI,m:D(OT ) −→ D(OT ).

The most important property of LηI,m is that it forms a filtration. In other words, for every
I-torsion-free complex K•, we have a canonical filtration

· · · ⊂ ηI,m+1K• ⊂ ηI,mK• ⊂ · · · .

The inclusion ηI,m+1K• ⊂ ηI,mK• at degrees i ≥ m + 1 (resp. i ≤ m − 1) is the identity of
(ηIK•)i (resp. idKi⊗OT I⊗m ⊗ (I ↪→OT )). For degree m, it is given by the canonical inclusion

(Km ⊗ I) ⊗OT I⊗m −→ (ηIK)m = {x ∈ Km|dx ∈ IKm+1} ⊗OT I⊗m

induced by (I ↪→OT ) ⊗ idI⊗m . We can summarise the information as in the diagram

...
...

(ηIK )m+1 (ηIK )m+1

Km ⊗OT
I⊗m+1 (ηIK )m

Km−1 ⊗OT
I⊗m+1 Km−1 ⊗OT

I⊗m

...
...

We can compute the graded pieces of the filtration.

LEMMA 3·3. Let K• be an I-torsion-free complex, we have a canonical isomorphism

ηI,mK•/ηI,m+1K• ∼= τ≤m(K• ⊗OT OT/I) ⊗OT I⊗m.

Proof. This is obvious except for degree m. We compute that

(ηIK)m/(Km ⊗OT I⊗m+1) ∼= {x ∈ Km|dx ∈ IKm+1}
IKm

⊗OT I⊗m

∼= {x̄ ∈ Km ⊗OT OT/I | dx̄ = 0 ∈ Km+1 ⊗OT OT/I} ⊗OT I⊗m,

but this is exactly the degree m part of τ≤m(K• ⊗OT OT/I) ⊗OT I⊗m by definition of τ≤m.
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A good way to package the information of ηI,m-construction is to view {LηI,m}m∈Z as a
functor

LηI,•:D(OT ) −→ FD(OT )

from the derived category D(OT ) to the filtered derived category of OT . Moreover, the
graded quotient functor can be identified as

Grm(LηI,•(−)) ∼= τ≤m(− ⊗L
OT

OT/I) ⊗OT I⊗m.

The next result we want to establish is the behaviour of LηI,• under the quotient by I .
Recall as in [BMS18, proposition 6·12] we have a canonical quasi-isomorphism

(LηIK) ⊗L
OT

OT/I ∼= H•(K/I),

where H•(K/I) is the complex whose degree i th term is Hi(K ⊗L
OT

OT/I) ⊗OT I⊗i and
the differential is given by the Bockstein map with respect to

0 −→ I/I2 −→OT/I2 −→OT/I −→ 0.

We will prove a slight refinement of the result for LηI,•.
Let K• be a I-torsion-free complex, we first observe that there is a canonical filtration

ηI,mK• ⊗OT I ⊂ ηI,m+1K• ⊂ ηI,mK•,

which in particular explains why ηI,mK•/ηI,m+1K• is anOT/I-complex. We have identified
the second graded piece, and the first graded piece can also be computed as follows.

PROPOSITION 3·4. Let K• be an I-torsion-free complex, then we have a canonical quasi-
isomorphism

ηI,m+1K•/ηI,mK• ⊗OT I ∼= Fm+1H•(K/I),

where Fm+1 is the stupid filtration of complexes, i.e.

(Fm+1C•)i =
{

Ci i ≥ m + 1

0 i ≤ m.

Proof. We see immediately from the definition that the degree ≥ m + 1 (resp. ≤ m − 1)
part of the left-hand side is (ηIK•)i ⊗OT OT/I (resp. 0). It remains to identify the degree
m-part of the LHS.

By definition

(ηI,m+1K•/ηI,mK• ⊗OT I)m = Km

{x ∈ Km|dx ∈ IKm+1} ⊗OT I⊗m+1,

which is identified through the differential with

Bm+1(K• ⊗OT OT/I) ⊗OT I⊗m+1,

where Bm+1(K• ⊗OT OT/I) is the image of (K• ⊗OT OT/I)m inside (K• ⊗OT OT/I)m+1.
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We first prove that the m th cohomology of the LHS is trivial. This is equivalent to the
differential map

Km

{x ∈ Km|dx ∈ IKm+1} ⊗OT I⊗m+1 −→ (ηIK•)m+1 ⊗OT OT/I

being injective. But this is clear, if x ∈ Km is mapped to I{y ∈ Km+1|dy ∈ IKm+2}, namely
dx ∈ I{y ∈ Km+1|dy ∈ IKm+2} ⊂ IKm+1, proving that x̄ is zero in the left-hand side.

We can now proceed exactly as in the proof of [BMS18, proposition 6·12]. We have
canonical maps

(ηIK•)i ⊗OT OT/I −→ Zi(K• ⊗OT OT/I) ⊗OT I⊗i

which induces the quasi-isomorphism

ηIK• ⊗OT OT/I ∼= H•(K/I).

We have a commutative diagram

...
...

(ηIK )m+3 ⊗OT
OT /I Hm+3(K• ⊗OT

OT /I) ⊗OT
I⊗m+3

(ηIK )m+2 ⊗OT
OT /I Hm+2(K• ⊗OT

OT /I) ⊗OT
I⊗m+2

(ηIK )m+1 ⊗OT
OT /I Zm+1(K• ⊗OT

OT /I) ⊗OT
I⊗m+1

Km

{x∈Km |dx∈IKm+1 } ⊗OT
I⊗m+1 Bm+1(K• ⊗OT

OT /I) ⊗OT
I⊗m+1

0 0

d
∼

where the differential on the right-hand side is induced from the Bockstein map, except the
second to the lowest one, which is the canonical inclusion.

It induces a quasi-isomorphism in degrees ≥ m + 2 by [BMS18, proposition 6·12], and
we have seen that the degree m cohomology of both sides are trivial. Thus it remains to show
that it induces a quasi-isomorphism in degree m + 1, this is the same as the proof of loc.cit..

We first prove that the map on m + 1 th cohomology is surjective. Let x̄ ∈ Zm+1(K• ⊗OT

OT/I) be a cocycle under Bockstein map, then by definition there exists a lift x ∈ Km+1

of x̄ together with y ∈ IKm+1 such that dx ≡ dy mod I2Km+2. This implies that x ∈ {x ∈
Km+1|dx ∈ IKm+2}. Moreover, it tells us that dx ∈ I{x ∈ Km+2|dx ∈ IKm+3}, which means
x defines a cocycle on the LHS that maps to x̄.

Now we show that the map on cohomology is injective. Let x ∈ {x ∈ Km+1|dx ∈ IKm+2}
whose reduction in {x ∈ Km+1|dx ∈ IKm+2}/I{x ∈ Km+1|dx ∈ IKm+2} is a cocycle on the
LHS. Moreover, we assume that its reduction x̄ ∈ Km+1/I lies in Bm+1(K• ⊗OT OT/I).
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By the isomorphism of the lower horizontal map, there exists y ∈ Km such that dy ≡
x mod IKm+1. The cocycle condition implies that dx ∈ I2{x ∈ Km+2|dx ∈ IKm+3}, but this
implies that dy ≡ x mod I{x ∈ Km+1|dx ∈ IKm+2}, i.e. x defines a trivial cohomological
class on the LHS.

COROLLARY 3·5. Let K• be a I-torsion-free complex, then

Hi(ηI,mK• ⊗OT OT/I) ∼=

⎧⎪⎨
⎪⎩

Hi(H•(K/I)) i ≥ m + 1

Zm(H•(K/I)) i = m

Hi(K• ⊗OT OT/I) ⊗OT I⊗m i ≤ m − 1.

Moreover, the connecting morphism

ηI,mK•/ηI,m+1K• −→ ηI,m+1K•/(ηI,mK• ⊗OT I)[1]

of the distinguished triangle

ηI,m+1K•/(ηI,mK• ⊗OT I) −→ ηI,mK•/(ηI,mK• ⊗OT I) −→ ηI,mK•/ηI,m+1K• −→ [1]

factorises as

ηI,mK•/ηI,m+1K• (ηI,m+1K•/(ηI,mK• ⊗OT
I))[1]

H•(K/I)m[−m] Zm+1(H•(K/I))[−m]
β

where β is the differential of the complex H•(K/I), namely the Bockstein map.
Lastly, the long exact sequence associated to the distinguished triangle gives

0 −→ Hm(ηI,mK• ⊗OT OT/I) −→ Hm(ηI,mK•/ηI,m+1K•)

−→ Hm+1(ηI,m+1K•/(ηI,mK• ⊗OT I)) −→ Hm+1(ηI,mK• ⊗OT OT/I) −→ 0,

which is identified with

0 −→ Zm(H•(K/I)) −→ H•(K/I)m β−→ Zm+1(H•(K/I)) −→ Hm+1(H•(K/I)) −→ 0.

Proof. The statement follows immediately from the long exact sequence associated to the
distinguished triangle together with Proposition 3·4 and Lemma 3·3, once we have identified
the connecting morphism.

The factorisation of the connecting morphism follows from an easy t-structure argument,
by noting that the source (resp. target) lies in D≤m(OT ) (resp. D≥m(OT )). We now prove
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that the factorisation β is the Bockstein differential map. This follows easily from a diagram
chasing. We write down the diagram of the distinguished triangle

...
... 0

(ηIK )m+2 ⊗OT
OT /I (ηIK )m+2 ⊗OT

OT /I 0

(ηIK )m+1 ⊗OT
OT /I (ηIK )m+1 ⊗OT

OT /I 0

Km

{x∈Km |dx∈IKm+1 } ⊗OT
I⊗m+1 (ηIK )m ⊗OT

OT /I Zm (K•/IK•) ⊗OT
I⊗m

0 (Km−1/IKm−1) ⊗OT
I⊗m (Km−1/IKm−1) ⊗OT

I⊗m .

Given x̄ ∈ Zm(K•/IK•) representing an element of H•(K/I)m, we choose a lift x ∈ {x ∈
Km|dx ∈ IKm+1} of it. Then β(x̄) is represented by dx viewed as an element of IKm+1/I{x ∈
Km+1|dx ∈ IKm+2}, but this clearly also represents the Bockstein map of x̄.

We have another natural inclusion

ηI,m+1K• ⊗OT I ⊂ ηI,mK• ⊗OT I ⊂ ηI,m+1K•

giving rise to the distinguished triangle

(ηI,mK•/ηI,m+1K•)(1) −→ ηI,m+1K•/(ηI,m+1K• ⊗OT I) −→ ηI,m+1K•/(ηI,mK• ⊗OT I)

with connecting morphism

Fm+1H•(K/I) ∼= ηI,m+1K•/(ηI,mK• ⊗OT I) −→ (ηI,mK•/ηI,m+1K•)(1)[1]

∼= τ≤m(K•/I)(m + 1)[1],

which has to be zero since the source and target sit in different cohomological degrees. Thus
we have a splitting

ηI,m+1K•/(ηI,m+1K• ⊗OT I) ∼= (ηI,mK•/ηI,m+1K•)(1) ⊕ ηI,m+1K•/(ηI,mK• ⊗OT I).

Then Proposition 3·4 and Lemma 3·3 identify the direct summand.

COROLLARY 3·6. Let K• be a I-torsion-free complex, we have an identification

ηI,m+1K•/(ηI,m+1K• ⊗OT I) ∼= (τ≤mK• ⊗OT OT/I)(m + 1) ⊕ Fm+1H•(K•/I),

which splits the distinguished triangle

(τ≤mK• ⊗OT OT/I)(m + 1) −→ ηI,m+1K•/(ηI,m+1K• ⊗OT I) −→ Fm+1H•(K•/I) −→ [1].
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Moreover, the distinguished triangle

ηI,m+1K•/(ηI,mK• ⊗OT I) −→ ηI,mK•/(ηI,mK• ⊗OT I) −→ ηI,mK•/ηI,m+1K• −→ [1]

is compatible with the splitting in the sense that we have a commutative diagram

(τ≤m−1K• ⊗OT
OT /I)(m)

Fm+1H•(K•/I) ηI,mK•/(ηI,mK• ⊗OT
I) (τ≤mK• ⊗OT

OT /I)(m)

FmH•(K•/I) Hm (K• ⊗OT
OT /I)(m)[−m]

[1]

b

a
d

c

where the the arrows a and b are the canonical map corresponding to the Hodge filtra-
tion and standard truncated filtration respectively, while c and d are graded quotient maps
corresponding to them.

4. Proof

We now start the proof of the theorem. We first observe that the Bialynicki–Birula type
construction of Film is fundamentally on cohomology groups, whereas the Hodge–Tate fil-
tration, in the classical construction, originates from a filtration on complexes. Thus a natural
way to proceed is to upgrade Film to a filtration on complexes and then compare the two fil-
tration on the derived category level. This is achieved by the Lηξ ,•-operation introduced in
the previous section. In some sense, we need to have a suitably derived Bialynicki–Birula
construction.

Let m ∈Z≥0, and we consider

Lηξ ,m	X/B+
dR

which is naturally a subcomplex of Lηξ	X/B+
dR

. By Lemma 3·3, we have

Grm	X/B+
dR

: = Lηξ ,m	X/B+
dR

/Lηξ ,m+1	X/B+
dR

6 ∼= τ≤m	X/B+
dR

(m) ∼= τ≤mRν∗ÔX(m),

which implies that under the canonical map

Lηξ ,m	X/B+
dR

−→ ξm	X/B+
dR

−→ 	X/B+
dR

(m),

the image of Hi(X, Lηξ ,m	X/B+
dR

) inside

Hi(X, 	X/B+
dR

)(m) ∼= Hi
ét(X, Qp) ⊗Qp C(m)

is exactly (m th Tate twist of) the m th Hodge–Tate filtration.

6 The notation is most naturally interpreted as the cokernel in the stable infinity category enrichment of the
derived category. Alternatively, we can interpret it as the m th graded quotient of Lηξ ,•	X/B+

dR
in the filtered

derived category.
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We observe that there is a natural map

Hi(X, Lηξ ,m	X/B+
dR

) −→ Hi(X, Lηξ	X/B+
dR

) ∩ ξmHi(X, 	X/B+
dR

),

and we want to prove that it induces an identification of Hi(X, Lηξ ,m	X/B+
dR

) with

Hi(X, Lηξ	X/B+
dR

) ∩ ξmHi(X, 	X/B+
dR

) ∼= Hi
crys(X/B+

dR) ∩ ξm(Hi
ét(X, Qp) ⊗Qp B

+
dR)),

which completes the proof.

PROPOSITION 4·1. Hi(X, Lηξ ,m	X/B+
dR

) is ξ -torsion-free for all i, m ∈Z≥0.

First proof. We prove that Hi(X, Lηξ ,m	X/B+
dR

) is ξ -torsion-free by descending induction
on m. The base case is when m is big enough so we have Lηξ ,m	X/B+

dR
= 	X/B+

dR
(m), in

which case the torsion-freeness follows from the primitive comparison theorem

Hi(X, Lηξ ,m	X/B+
dR

) ∼= Hi(X, 	X/B+
dR

(m)) ∼= Hi
ét(X, Qp) ⊗Qp B

+
dR(m).

Now assume that Hi(X, Lηξ ,m+1	X/B+
dR

) is ξ -torsion-free, we want to prove that the same

is true for Hi(X, Lηξ ,m	X/B+
dR

). Using the long exact sequence associated to

Lηξ ,m	X/B+
dR

ξ−→ Lηξ ,m	X/B+
dR

−→ Lηξ ,m	X/B+
dR

/ξLηξ ,m	X/B+
dR

−→ [1],

it is enough to prove that the natural map

Hi(X, Lηξ ,m	X/B+
dR

) −→ Hi(X, Lηξ ,m	X/B+
dR

/ξLηξ ,m	X/B+
dR

)

is surjective.
We have the commutative diagram

H i (X, Lηξ,m+1 X/B+dR
) H i (X, Lηξ,m+1 X/B+dR

/ξLηξ,m X/B+dR
)

H i (X, Lηξ,m X/B+dR
) H i (X, Lηξ,m X/B+dR

/ξLηξ,m X/B+dR
)

H i (X,Grm X/B+dR
) H i (X,Grm X/B+dR

)

h

g b

a

f

d
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corresponding to the map of distinguished triangles

Lηξ,m+1 X/B+dR
/ξLηξ,m X/B+dR

Lηξ,m X/B+dR
/ξLηξ,m X/B+dR

Grm X/B+dR

Lηξ,m+1 X/B+dR
Lηξ,m X/B+dR

Grm X/B+dR
.

We note that the map a is surjective by our induction hypothesis. Namely, the connecting
map

Hi(X, Grm	X/B+
dR

) −→ Hi+1(X, Lηξ ,m+1	X/B+
dR

)

is 0 since the right-hand side is torsion free by induction hypothesis.
We have that h is surjective as well. This is again because of our inductive hypothesis that

Hi+1(X, Lηξ ,m+1	X/B+
dR

) is torsion-free, so the natural map

p:Hi(X, Lηξ ,m+1	X/B+
dR

) −→ Hi(X, Lηξ ,m+1	X/B+
dR

/ξLηξ ,m+1	X/B+
dR

)

is surjective, but Corollary 3·6 implies that

Hi(X, Lηξ ,m+1/ξLηξ ,m+1	X/B+
dR

) ∼= Hi(X, Grm	X/B+
dR

)(1) ⊕ Hi(X, Lηξ ,m+1/ξLηξ ,m	X/B+
dR

)

composing the projection to second factor with p implies that h is surjective.
Now we prove that f is surjective, which completes the proof. Given x ∈

Hi(X, Lηξ ,m	X/B+
dR

/ξLηξ ,m	X/B+
dR

), we can find y ∈ Hi(X, Lηξ ,m	X/B+
dR

) such that d(f (y)) =
a(y) = d(x) by surjectivity of a. Thus x − f (y) ∈ Ker(d) = Im(b), so there exists w ∈
Hi(X, Lηξ ,m+1	X/B+

dR
/ξLηξ ,m	X/B+

dR
) such that b(w) = x − f (y), the surjectivity of h tells

us that w = h(z) for z ∈ Hi(X, Lηξ ,m+1	X/B+
dR

), which implies that

x = f (y) + b(h(z)) = f (y + g(z)),

proving the surjectivity of f .
Second proof. We prove that Hi(X, Lηξ ,m	X/B+

dR
) is ξ -torsion-free by ascending induction

on m. The base case m = 0 is [BMS18, theorem 13·19] since

Lηξ ,0	X/B+
dR

= Lηξ	X/B+
dR

,

which follows from 	X/B+
dR

∈ D≥0 and ξ -torsion-freeness of H0(	X/B+
dR

).

Now assume that Hi(X, Lηξ ,m	X/B+
dR

) is ξ -torsion-free, we want to prove that the same is

true for Hi(X, Lηξ ,m+1	X/B+
dR

). It is enough to prove that the natural map

Hi(X, Lηξ ,m+1	X/B+
dR

) −→ Hi(X, Lηξ ,m	X/B+
dR

)

is injective. Using the long exact sequence associated to the distinguished triangle

Lηξ ,m+1	X/B+
dR

−→ Lηξ ,m	X/B+
dR

−→ Grm	X/B+
dR

−→ [1], (5)

it is enough to show that

Hi−1(X, Grm	X/B+
dR

) −→ Hi(X, Lηξ ,m+1	X/B+
dR

)

is 0. Note that the i = 0 case is trivial, as the left–hand side cohomology group is 0.
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We have the commutative diagram

H i−1(X,Grm X/B+dR
) H i (X, Lηξ,m+1/ξLηξ,m ( X/B+dR

))

H i−1(X,Grm X/B+dR
) H i (X, Lηξ,m+1 X/B+dR

) H i (X, Lηξ,m X/B+dR
)

H i (X, ξLηξ,m X/B+dR
)

β

f

h

g

b
a

where the middle row and column are exact, being part of the long exact sequence associated
to distinguished triangles. The first row is the connecting morphism as specified in Corollary
3·5, and the square is commutative since it is induced by the morphism of distinguished
triangles

Lηξ,m+1 X/B+dR
/ξLηξ,m X/B+dR

Lηξ,m X/B+dR
/ξLηξ,m X/B+dR

Grm X/B+dR

Lηξ,m+1 X/B+dR
Lηξ,m X/B+dR

Grm X/B+dR

The arrow b is injective by our inductive hypothesis, so a is injective as well.
We know from (2) and Corollary 3·5 that β factorises as

H i−1(X,Grm X/B+dR
) H i (X, Lηξ,m+1 X/B+dR

/ξLηξ,m X/B+dR
)

H i−1(X, τ≤m X/B+dR
)(m) H i (X,Fm+1Ω

•
X )

H i−1(X,Ωm
X [−m]) H i−1(X, Zm+1Ω•X [−m])

∼

β

∼

β

d

where Zm+1�•
X is the sheaf of closed m + 1-forms, and d is the usual differential of de Rham

complexes. By the degeneration of Hodge–de Rham spectral sequence proved in [BMS18,
theorem 13·3], we know that

Hi−1(X, �m
X )

d−→ Hi−1(X, �m+1
X )

is 0, and we claim that this implies that the composition

Hi−1(X, �m
X [−m])

d−→ Hi−1(X, Zm+1�•
X[−m]) −→ Hi(X, Fm+1�

•
X) ∼= Hi−1(X, Fm+1�

•
X[1])

is 0, so β is 0 as well.
Indeed, filtering both �m

X [ − m] and Fm+1�
•
X[1] by the Hodge filtration, we see that the

map on the first graded piece is Hi−1(X, �m
X [ − m])

d−→ Hi−1(X, �m+1
X [ − m]) which we
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have seen to be 0. The map on other graded pieces are also 0, since �m
X [ − m] has only one

non-zero graded piece, proving the claim.
Now let x ∈ Hi−1(X, Grm	X/B+

dR
), then f (x) ∈ Ker(h) since β = 0, so we have f (x) = a(y)

for some y ∈ Hi(X, ξLηξ ,m	X/B+
dR

). Then b(y) = g(a(y)) = g(f (x)) = 0, which implies that
y = 0 by injectivity of b, so f (x) = a(y) = 0. Hence we have f = 0, finishing the induction.

Remark 4·2. The first proof has the advantage that it is independent of the Conrad–Gabber
spreading theorem. In particular, we give a Conrad–Gabber independent proof the ξ -torsion-
freeness of Hi

crys(X, B+
dR). See [BMS18, 13·19], and [Guo21a, theorem 7·3·5] for proofs that

involves the spreading theorem.

The proposition tells us that long exact sequence assoicated to the distinguished triangle
(5) splits into short exact sequences

0 −→ Hi(X, Lηξ ,m+1	X/B+
dR

) −→ Hi(X, Lηξ ,m	X/B+
dR

) −→ Hi(X, τ≤m	X/B+
dR

)(m) −→ 0,

indeed, Hi(X, τ≤m	X/B+
dR

)(m) is ξ -torsion which admits no non-zero connecting morphism

to the ξ -torsion-free module Hi+1(X, Lηξ ,m+1	X/B+
dR

). In particular,

Hi(X, Lηξ ,m	X/B+
dR

) −→ Hi(X, Lηξ ,0	X/B+
dR

) = Hi(X, Lηξ	X/B+
dR

),

so the canonical map

Hi(X, Lηξ ,m	X/B+
dR

) −→ Hi(X, Lηξ	X/B+
dR

) ∩ ξmHi(X, 	X/B+
dR

)

is injective. We now prove that it is also surjective.
We proceed by induction on m. The base case m = 0 is clear, as both sides are

Hi(X, Lηξ	X/B+
dR

). Assume that the map is surjective for m, we prove it is also surjective
for m + 1. We consider the commutative diagram

0 0

H i (X, Lηξ,m+1 X/B+dR
) H i (X, Lηξ X/B+dR

) ∩ ξm+1H i (X, X/B+dR
)

H i (X, Lηξ,m X/B+dR
) H i (X, Lηξ X/B+dR

) ∩ ξmH i (X, X/B+dR
)

H i (X, τ≤m X/B+dR
)(m) H i (X, X/B+dR

)(m)

0

∼

where the two vertical sequences are exact, the middle horizontal arrow is an isomorphism
by our inductive hypothesis, and the bottom horizontal arrow is injective by the degeneration
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of Hodge–Tate spectral sequence ([BMS18, theorem 13·3]). Now an easy diagram chasing
proves that the first horizontal arrow is surjective, finishing the induction.

5. Miscellany

We document an interesting byproduct in our treatment of Hodge–Tate filtration, namely
we can give a conceptual explanation why the degeneration of Hodge–Tate spectral
sequences is equivalent to that of Hodge–de Rham spectral sequences. The claim is clear
in the proof of [BMS18, theorem 13·3], which is by dimension counting. Note that the
torsion-freeness of Hi

crys(X/B+
dR) is used in loc.cit. as a bridge between the dimension of the

de Rham cohomology and étale cohomology.

PROPOSITION 5·1. Let X be a proper smooth rigid analytic variety over a complete alge-
braically closed non-archimedean field C of mixed characteristic p, the degeneration of the
Hodge–Tate spectral sequence

Ep,q
2 = Hp(X, �q

X)(−q) =⇒ Hp+q
ét (X, Qp) ⊗Qp C

is equivalent to the degeneration of Hodge–de Rham spectral sequence

Ep,q
1 = Hq(X, �p

X) =⇒ Hp+q(X, �•
X).

More precisely, in the natural diagram

H i (X, τ≤m−1 X/B+dR
)(m) H i (X, τ≤m X/B+dR

)(m) H i (X,Ωm
X [−m])

H i (X,Fm+1Ω
•
X ) H i (X,FmΩ

•
X ) H i (X,Ωm

X [−m])

f

g

where f and g are the canonical maps corresponding to the truncation filtration and Hodge
filtration respectively, we have that

Coker(f ) = Coker(g) ⊂ Hi(X, �m
X [ − m])

as subspaces of Hi(X, �m
X [ − m]).

Proof. We know that the Hodge–Tate spectral sequence is induced from the filtration
Hi(X, τ≤m	X/B+

dR
) corresponding to standard truncation, and the Hodge–de Rham spec-

tral sequence is induced from the Hodge filtration Hi(X, Fm�•
X). It is then clear that the

equivalence of degeneration is implied by the claim on f and g.
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We now prove the claim. We have a commutative diagram

H i (X, Lηξ,m X/B+dR
)

H i (X, Lηξ,m+1 X/B+dR
) H i (X, Lηξ,m X/B+dR

) H i (X, τ≤m X/B+dR
)(m)

H i (X, Lηξ,m/ξLηξ,m X/B+dR
)

ξ

h

where the vertical and horizontal sequences are both short exact sequences, which follows
from Proposition 4·1. The factorisation h is induced by the canonical map

Lηξ ,m	X/B+
dR

/ξLηξ ,m	X/B+
dR

−→ Lηξ ,m	X/B+
dR

/Lηξ ,m+1	X/B+
dR

∼= τ≤m	X/B+
dR

(m),

and h is surjective because it is a factorisation of a surjective map.
Now Corollary 3·6 gives us a commutative diagram

H i (X,Fm+1Ω
•
X )

H i (X, τ≤m−1 X/B+dR
)(m) H i (X, Lηξ,m/ξLηξ,m X/B+dR

) H i (X,FmΩ
•
X )

H i (X, τ≤m X/B+dR
)(m) H i (X,Ωm

X [−m]),

g

f
h

and the claim in the proposition follows immediately.
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