We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that certain tree products of finitely generated Abelian groups have Property E. Using this fact, we show that the outer automorphism groups of those tree products of Abelian groups and Brauner’s groups are residually finite.
In this paper, one model of the universal Teichmüller space is studied. By the method of construction, the lower bound of the inner radius of univalency by the Pre-Schwarzian derivative of quasidisks with infinity as an inner point (such as domains bounded by ellipses) is obtained.
We compute commutativity degrees of wreath products of finite Abelian groups A and B. When B is fixed of order n the asymptotic commutativity degree of such wreath products is 1/n2. This answers a generalized version of a question posed by P. Lescot. As byproducts of our formula we compute the number of conjugacy classes in such wreath products, and obtain an interesting elementary number-theoretic result.
It is well known that an orientation-preserving homeomorphism of the plane without fixed points has trivial dynamics; that is, its non-wandering set is empty and all the orbits diverge to infinity. However, orbits can diverge to infinity in many different ways (or not) giving rise to fundamental regions of divergence. Such a map is topologically equivalent to a plane translation if and only if it has only one fundamental region. We consider the conservative, orientation-preserving and fixed point free Hénon map and prove that it has only one fundamental region of divergence. Actually, we prove that there exists an area-preserving homeomorphism of the plane that conjugates this Hénon map to a translation.
The structure of Schur multiplicative maps on matrices over a field is studied. The result is then used to characterize Schur multiplicative maps f satisfying for different subsets S of matrices including the set of rank k matrices, the set of singular matrices, and the set of invertible matrices. Characterizations are also obtained for maps on matrices such that Γ(f(A))=Γ(A) for various functions Γ including the rank function, the determinant function, and the elementary symmetric functions of the eigenvalues. These results include analogs of the theorems of Frobenius and Dieudonné on linear maps preserving the determinant functions and linear maps preserving the set of singular matrices, respectively.
Approximations for the Stieltjes integral with (φ,Φ)-Lipschitzian integrators are given. Applications for the Riemann integral of a product and for the generalized trapezoid and Ostrowski inequalities are also provided.
Let σA(n)=∣{(a,a′)∈A2:a+a′=n}∣, where and A is a subset of . Erdös and Turán conjectured that, for any basis A of , σA(n) is unbounded. In 1990, Ruzsa constructed a basis for which σA(n) is bounded in the square mean. In this paper, based on Ruzsa’s method, we show that there exists a basis A of satisfying for large enough N.
We give a formula for the Laplacian of the second fundamental form of an n-dimensional compact minimal submanifold M in a complex projective space CPm. As an application of this formula, we prove that M is a geodesic minimal hypersphere in CPm if the sectional curvature satisfies K≥1/n, if the normal connection is flat, and if M satisfies an additional condition which is automatically satisfied when M is a CR submanifold. We also prove that M is the complex projective space CPn/2 if K≥3/n, and if the normal connection of M is semi-flat.
For a large class of operator inclusions, including those generated by maps of pseudomonotone type, we obtain a general theorem on existence of solutions. We apply this result to some particular examples. This theorem is proved using the method of difference approximations.
In the paper we prove that any closed finite type curve in the Euclidean space En(n≥2) lies in a null-space of a non-trivial polynomial P=P(x1,…,xn) of variables x1,…,xn, and thus lies on a surface of finite degree.
We define a subgraph of the zero divisor graph of a ring, associated to the ring idempotents. We study its properties and prove that for large classes of rings the connectedness of the graph is equivalent to the indecomposability of the ring and in those cases we also calculate the graph’s diameter.
Let ϕ and ψ be analytic self-maps of the open unit disk. Each of them induces a composition operator, Cϕ and Cψ respectively, acting between weighted Bergman spaces of infinite order. We show that the difference Cϕ−Cψ is compact if and only if both operators are compact or both operators are not compact and the pseudohyperbolic distance of the functions ϕ and ψ tends to zero if ∣ϕ(z)∣→1 or ∣ψ(z)∣→1.