Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T01:23:24.530Z Has data issue: false hasContentIssue false

OUTER AUTOMORPHISM GROUPS OF CERTAIN TREE PRODUCTS OF ABELIAN GROUPS

Published online by Cambridge University Press:  01 February 2008

Y. D. CHAI
Affiliation:
Sungkyunkwan University, Suwon, 440-746, Korea (email: [email protected])
YOUNGGI CHOI
Affiliation:
Seoul National University, Seoul, 151-742, Korea (email: [email protected])
GOANSU KIM
Affiliation:
Yeungnam University, Kyongsan, 712-749, Korea (email: [email protected])
C. Y. TANG
Affiliation:
University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that certain tree products of finitely generated Abelian groups have Property E. Using this fact, we show that the outer automorphism groups of those tree products of Abelian groups and Brauner’s groups are residually finite.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2008

References

[1]Allenby, R. B. J. T., Kim, G. and Tang, C. Y., ‘Residual finiteness of outer automorphism groups of certain pinched 1-relator groups’, J. Algebra 246(2) (2001), 849858.CrossRefGoogle Scholar
[2]Baumslag, G., ‘Automorphism groups of residually finite groups’, J. London Math. Soc. 38 (1963), 117118.Google Scholar
[3]Gilman, R., ‘Finite quotients of the automorphism groups of a free group’, Canad. J. Math. 29 (1977), 541551.CrossRefGoogle Scholar
[4]Grossman, E. K., ‘On the residual finiteness of certain mapping class groups’, J. London Math. Soc. (2) 9 (1974), 160164.Google Scholar
[5]Haken, H., ‘Zum Identitätsproblem bei Gruppen’, Math. Z. 56 (1952), 335362.Google Scholar
[6]Johannson, K., ‘On the mapping class groups of simple 3-manifolds’, in: Topology of low dimensional manifolds, Lecture Notes in Mathematics, 722 (Springer, Berlin, 1979), pp. 4866.Google Scholar
[7]Kim, G. and Tang, C. Y., ‘Separability properties of certain tree products of groups’, J. Algebra 251 (2002), 323349.CrossRefGoogle Scholar
[8]Magnus, W., Karrass, A. and Solitar, D., Combinatorial Group Theory, Pure and Applied Mathematics, XIII (Wiley-Interscience, New York, 1966).Google Scholar
[9]Neumann, B. H., ‘Adjunction of elements to groups’, J. London Math. Soc. 18 (1943), 411.Google Scholar
[10]Stebe, P. F., ‘Residual finiteness of a class of knot groups’, Comm. Pure. Appl. Math. 21 (1968), 563583.CrossRefGoogle Scholar
[11]Stebe, P. F., ‘Conjugacy separability of the groups of hose knots’, Trans. Amer. Math. Soc. 159 (1971), 7990.CrossRefGoogle Scholar
[12]Wise, D., ‘A residually finite version of Rips’s constructions’, Bull. London Math. Soc. 35 (2003), 2329.CrossRefGoogle Scholar