Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T14:22:54.821Z Has data issue: false hasContentIssue false

Does early motor development contribute to speech perception?

Published online by Cambridge University Press:  13 December 2017

Dawoon Choi
Affiliation:
Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. [email protected]://infantstudies.psych.ubc.ca
Padmapriya Kandhadai
Affiliation:
Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. [email protected]://infantstudies.psych.ubc.ca
D. Kyle Danielson
Affiliation:
Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. [email protected]://infantstudies.psych.ubc.ca
Alison G. Bruderer
Affiliation:
Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. [email protected]://infantstudies.psych.ubc.ca
Janet F. Werker
Affiliation:
Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. [email protected]://infantstudies.psych.ubc.ca

Abstract

At the end of the target article, Keven & Akins (K&A) put forward a challenge to the developmental psychology community to consider the development of complex psychological processes – in particular, intermodal infant perception – across different levels of analysis. We take up that challenge and consider the possibility that early emerging stereotypies might help explain the foundations of the link between speech perception and speech production.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruderer, A. G., Danielson, D. K., Kandhadai, P. & Werker, J. F. (2015) Sensorimotor influences on speech perception in infancy. Proceedings of the National Academy of Sciences of the United States of America 112(44):13531–36. Available at: https://doi.org/10.1073/pnas.1508631112.Google Scholar
Deck, M., Lokmane, L., Chauvet, S., Mailhes, C., Keita, M., Niquille, M., Yoshida, M., Yoshida, Y., Lebrand, C., Mann, F., Grove, E. A. & Garel, S. (2013) Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 77(3):472–84. Available at: https://doi.org/10.1016/j.neuron.2012.11.031.Google Scholar
Dubois, J., Poupon, C., Thirion, B., Simonnet, H., Kulikova, S., Leroy, F., Hertz-Pannier, L. & Dehaene-Lambertz, G. (2015) Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cerebral Cortex 26(5):2283–98. Available at: https://doi.org/10.1093/cercor/bhv082.Google Scholar
Greenough, W. T. (1986) What's special about development? Thoughts on the bases of experience-sensitive synaptic plasticity. In: Developmental neuropsychobiology, ed. Greenough, W. T. & Juraska, J. M., pp. 387407. Academic.Google Scholar
Kolasinski, J., Takahashi, E., Stevens, A. A., Benner, T., Fischl, B., Zöllei, L. & Grant, P. E. (2013) Radial and tangential neuronal migration pathways in the human fetal brain: Anatomically distinct patterns of diffusion MRI coherence. Neuroimage 79:412–22. Available at: https://doi.org/10.1016/j.neuroimage.2013.04.125.Google Scholar
Kuhl, P. K. & Meltzoff, A. (1982) The bimodal perception of speech in infancy. Science 218(4577):1138–41.Google Scholar
Kuhl, P. K., Ramirez, R. R., Bosseler, A., Lin, J. F. L. & Imada, T. (2014) Infant brain responses to speech suggest analysis by synthesis. Proceedings of the National Academy of Sciences USA 111(31):11238–45.Google Scholar
Leroy, F., Glasel, H., Dubois, J., Hertz-Pannier, L., Thirion, B., Mangin, J. F. & Dehaene-Lambertz, G. (2011) Early maturation of the linguistic dorsal pathway in human infants. The Journal of Neuroscience 31(4):1500–506. Available at: https://doi.org/10.1523/JNEUROSCI.4141-10.2011.Google Scholar
Mahmoudzadeh, M., Wallois, F., Kongolo, G., Goudjil, S. & Dehaene-Lambertz, G. (2017) Functional maps at the onset of auditory inputs in very early preterm human neonates. Cerebral Cortex 27(4):2500–12. Available at: https://doi.org/10.1093/cercor/bhw103.Google Scholar
Patterson, M. L. & Werker, J. F. (2003) Two-month-old infants match phonetic information in lips and voice. Developmental Science 6(2):191–96. Available at: https://doi.org/10.1111/1467-7687.00271.Google Scholar
Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., Poloniato, A., Lohmann, G. & Friederici, A. D. (2011) Neural language networks at birth. Proceedings of the National Academy of Sciences USA 108(38):16056–61. Available at: https://doi.org/10.1073/pnas.1102991108.Google Scholar
Poeppel, D. (2012) The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. Cognitive Neuropsychology 29(1–2):3455. Available at: https://doi.org/10.1080/02643294.2012.710600.Google Scholar
Sarnat, H. B. (2003) Functions of the corticospinal and corticobulbar tracts in the human newborn. Journal of Pediatric Neurology 1(01):38.Google Scholar
Werker, J. F. & Hensch, T. K. (2015) Critical periods in speech perception: New directions. Annual Review of Psychology 66:173–96. Available at: https://doi.org/10.1146/annurev-psych-010814-015104.Google Scholar
Yeung, H. H. & Werker, J. F. (2013) Lip movements affect infant audiovisual speech perception. Psychological Science 24(5):603–12. Available at: https://doi.org/10.1177/0956797612458802.Google Scholar