Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T17:21:24.309Z Has data issue: false hasContentIssue false

Vocal learning, prosody, and basal ganglia: Don't underestimate their complexity1

Published online by Cambridge University Press:  17 December 2014

Andrea Ravignani
Affiliation:
Department of Cognitive Biology, University of Vienna, A-1090 Vienna, Austria. [email protected]@[email protected]://homepage.univie.ac.at/andrea.ravignani/www.researchgate.net/profile/Mauricio_Martins4/http://homepage.univie.ac.at/tecumseh.fitch/
Mauricio Martins
Affiliation:
Department of Cognitive Biology, University of Vienna, A-1090 Vienna, Austria. [email protected]@[email protected]://homepage.univie.ac.at/andrea.ravignani/www.researchgate.net/profile/Mauricio_Martins4/http://homepage.univie.ac.at/tecumseh.fitch/ Language Research Laboratory, Lisbon Faculty of Medicine, 1649-028 Lisbon, Portugal.
W. Tecumseh Fitch
Affiliation:
Department of Cognitive Biology, University of Vienna, A-1090 Vienna, Austria. [email protected]@[email protected]://homepage.univie.ac.at/andrea.ravignani/www.researchgate.net/profile/Mauricio_Martins4/http://homepage.univie.ac.at/tecumseh.fitch/

Abstract

Ackermann et al.'s arguments in the target article need sharpening and rethinking at both mechanistic and evolutionary levels. First, the authors' evolutionary arguments are inconsistent with recent evidence concerning nonhuman animal rhythmic abilities. Second, prosodic intonation conveys much more complex linguistic information than mere emotional expression. Finally, human adults' basal ganglia have a considerably wider role in speech modulation than Ackermann et al. surmise.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1.

Andrea Ravignani and Mauricio Martins contributed equally to this commentary as joint first authors.

References

Christophe, A., Millotte, S., Bernal, S. & Lidz, J. (2008) Bootstrapping lexical and syntactic acquisition. Language and Speech 51 (1–2):6175. doi: 10.1177/00238309080510010501.Google Scholar
Conway, C. M. & Christiansen, M. H. (2001) Sequential learning in non-human primates. Trends in Cognitive Sciences 5(12):539–46.Google Scholar
Cook, P., Rouse, A., Wilson, M. & Reichmuth, C. (2013) A California sea lion (Zalophus californianus) can keep the beat: Motor entrainment to rhythmic auditory stimuli in a non-vocal mimic. Journal of Comparative Psychology 127(4):412–27. doi: 10.1037/a0032345.CrossRefGoogle Scholar
Cutler, A., Oahan, D. & van Donselaar, W. (1997) Prosody in the comprehension of spoken language: A literature review. Language and Speech 40(2):141201.Google Scholar
Dominey, P. F. & Inui, T. (2009) Cortico-striatal function in sentence comprehension: Insights from neurophysiology and modeling. Cortex 45(8):1012–18. doi: 10.1016/j.cortex.2009.03.007.Google Scholar
Fedurek, P., Schel, A. M. & Slocombe, K. E. (2013) The acoustic structure of chimpanzee pant-hooting facilitates chorusing. Behavioral Ecology and Sociobiology 67(11):1781–89.Google Scholar
Fitch, W. T. (2012) The biology and evolution of rhythm: Unraveling a paradox. In: Language and music as cognitive systems, ed. Rebuschat, P., Rohrmeier, M., Hawkins, J. A. & Cross, I., pp. 7395. Oxford University Press.Google Scholar
Friederici, A. D. & Kotz, S. A. (2003) The brain basis of syntactic processes: Functional imaging and lesion studies. NeuroImage 20:S8S17. doi: 10.1016/S1053-8119(03)00522-6.Google Scholar
Geissmann, T. (2000) Gibbon songs and human music from an evolutionary perspective. In: The origins of music, ed. Wallin, N. L., Merker, B. & Brown, S., pp. 103–23. MIT Press.Google Scholar
Hagen, E. H. & Bryant, G. A. (2003) Music and dance as a coalition signaling system. Human Nature 14(1):2151.Google Scholar
Hagen, E. H. & Hammerstein, P. (2009) Did Neanderthals and other early humans sing? Seeking the biological roots of music in the territorial advertisements of primates, lions, hyenas, and wolves. Musicae Scientiae 13 (Suppl. 2):291320.Google Scholar
Hasegawa, A., Okanoya, K., Hasegawa, T. & Seki, Y. (2011) Rhythmic synchronization tapping to an audio–visual metronome in budgerigars. Scientific Reports 1 (Article 120): 18. (Online journal). doi:10.1038/srep00120.Google Scholar
Hattori, Y., Tomonaga, M. & Matsuzawa, T. (2013) Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Scientific Reports 3 (Article 1566): 16. (Online journal). doi: 10.1038/srep01566.Google Scholar
Henry, J. D. & Crawford, J. R. (2004) Verbal fluency deficits in Parkinson's disease: A meta-analysis. Journal of the International Neuropsychological Society 10:608–22.Google Scholar
Janik, V. & Slater, P. J. B. (1997) Vocal learning in mammals. In: Advances in the Study of Behavior, vol. 26, ed. Slater, P. J. B., Rosenblatt, J. S., Snowdon, C. T., & Milinski, M., pp. 5999. Academic Press.Google Scholar
Kjelgaard, M. M. & Speer, S. R. (1999) Prosodic facilitation and interference in the resolution of temporary syntactic closure ambiguity. Journal of Memory and Language 40:153–94.Google Scholar
Kotz, S. A., Frisch, S., Cramon, S. Y. & Friederici, A. D. (2003) Syntactic language processing: ERP lesion data on the role of the basal ganglia. Journal of the International Neuropsychological Society 9:1053–60.Google Scholar
Langus, A., Marchetto, E., Bion, R. A. H. & Nespor, M. (2012) Can prosody be used to discover hierarchical structure in continuous speech? Journal of Memory and Language 66(1):285306. doi: 10.1016/j.jml.2011.09.004.Google Scholar
Lewis, F. M., Lapointe, L. L., Murdoch, B. E. & Chenery, H. J. (1998) Language impairment in Parkinson's disease. Aphasiology 12(3):193206. doi: 10.1080/02687039808249446.Google Scholar
Männel, C., Schipke, C. S. & Friederici, A. D. (2013) The role of pause as a prosodic boundary marker: Language ERP studies in German 3- and 6-year-olds. Developmental Cognitive Neuroscience 5:8694. doi: 10.1016/j.dcn.2013.01.003.Google Scholar
Merker, B. (2000) Synchronous chorusing and the origins of music. Musicae Scientiae 3 (Suppl. 1):5973.Google Scholar
Merker, B., Madison, G. & Eckerdal, P. (2009) On the role and origin of isochrony in human rhythmic entrainment. Cortex 45(1):417.Google Scholar
Patel, A. D. (2006) Musical rhythm, linguistic rhythm, and human evolution. Music Perception: An Interdisciplinary Journal 24(1):99104.Google Scholar
Patel, A. D., Iversen, J. R., Bregman, M. R. & Schulz, I. (2009a) Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology 19(10):827–30.Google Scholar
Ravignani, A., Olivera, V. M., Gingras, B., Hofer, R., Hernández, C. R., Sonnweber, R.-S. & Fitch, W. T. (2013) Primate drum kit: A system for studying acoustic pattern production by non-human primates using acceleration and strain sensors. Sensors 13(8):9790–820.Google Scholar
Teichmann, M., Gaura, V., Demonet, J. F., Supiot, F., Delliaux, M., Verny, C., Renou, P., Remy, P. & Bachoud-Levi, A. C. (2008) Language processing within the striatum: Evidence from a PET correlation study in Huntington's disease. Brain 131(4):1046–56. doi: 10.1093/brain/awn036.Google Scholar
ten Cate, C. & Okanoya, K. (2012) Revisiting the syntactic abilities of non-human animals: Natural vocalizations and artificial grammar learning. Philosophical Transactions of the Royal Society, B: Biological Sciences 367(1598):1984–94.Google Scholar
Ullman, M. T. (2004) Contributions of memory circuits to language: The declarative/procedural model. Cognition 92 (1–2):231–70.Google Scholar
Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J. & Pinker, S. (1997) A neural dissociation within language: Evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. Journal of Cognitive Neuroscience 9(2):266–76.CrossRefGoogle ScholarPubMed
Wagner, M. (2010) Prosody and recursion in coordinate structures and beyond. Natural Language and Linguistic Theory 28(1):183237. doi: 10.1007/s11049-009-9086-0.CrossRefGoogle Scholar
Wagner, M. & Watson, D. G. (2010) Experimental and theoretical advances in prosody: A review. Language and Cognitive Processes 25 (7–9):905–45. doi: 10.1080/01690961003589492.Google Scholar