Published online by Cambridge University Press: 17 December 2014
We argue that a comprehensive model of human vocal behaviour must address both voluntary and involuntary aspects of articulate speech and non-verbal vocalizations. Within this, plasticity of vocal output should be acknowledged and explained as part of the mature speech production system.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.
Target article
Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective
Related commentaries (30)
Beyond cry and laugh: Toward a multilevel model of language production
Comparative analyses of speech and language converge on birds
Contribution of the basal ganglia to spoken language: Is speech production like the other motor skills?
Differences in auditory timing between human and nonhuman primates
Does it talk the talk? On the role of basal ganglia in emotive speech processing
Early human communication helps in understanding language evolution
En route to disentangle the impact and neurobiological substrates of early vocalizations: Learning from Rett syndrome
Environments organize the verbal brain
Evolution of affective and linguistic disambiguation under social eavesdropping pressures
Functional neuroimaging of human vocalizations and affective speech
Functions of the cortico-basal ganglia circuits for spoken language may extend beyond emotional-affective modulation in adults
Modification of spectral features by nonhuman primates
Neanderthals did speak, but FOXP2 doesn't prove it
Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates
Phonation takes precedence over articulation in development as well as evolution of language
Physical mechanisms may be as important as brain mechanisms in evolution of speech
Speech as a breakthrough signaling resource in the cognitive evolution of biological complex adaptive systems
Speech prosody, reward, and the corticobulbar system: An integrative perspective
Speech, vocal production learning, and the comparative method
The basal ganglia within a cognitive system in birds and mammals
The evolution of coordinated vocalizations before language
The forgotten role of consonant-like calls in theories of speech evolution
The sensorimotor and social sides of the architecture of speech
The sound of one hand clapping: Overdetermination and the pansensory nature of communication
Very young infants' responses to human and nonhuman primate vocalizations
Vocal communication is multi-sensorimotor coordination within and between individuals
Vocal learning, prosody, and basal ganglia: Don't underestimate their complexity1
Voluntary and involuntary processes affect the production of verbal and non-verbal signals by the human voice
Why vocal production of atypical sounds in apes and its cerebral correlates have a lot to say about the origin of language
Why we can talk, debate, and change our minds: Neural circuits, basal ganglia operations, and transcriptional factors
Author response
Phylogenetic reorganization of the basal ganglia: A necessary, but not the only, bridge over a primate Rubicon of acoustic communication