As a promising machine learning method for active flow control (AFC), deep reinforcement learning (DRL) has been successfully applied in various scenarios, such as the drag reduction for stationary cylinders under both laminar and weakly turbulent conditions. However, current applications of DRL in AFC still suffer from drawbacks including excessive sensor usage, unclear search paths and insufficient robustness tests. In this study, we aim to tackle these issues by applying DRL-guided self-rotation to suppress the vortex-induced vibration (VIV) of a circular cylinder under the lock-in condition. With a state space consisting only of the acceleration, velocity and displacement of the cylinder, the DRL agent learns an effective control strategy that successfully suppresses the VIV amplitude by $99.6\,\%$. Through systematic comparisons between different combinations of sensory-motor cues as well as sensitivity analysis, we identify three distinct stages of the search path related to the flow physics, in which the DRL agent adjusts the amplitude, frequency and phase lag of the actions. Under the deterministic control, only a little forcing is required to maintain the control performance, and the VIV frequency is only slightly affected, showing that the present control strategy is distinct from those utilizing the lock-on effect. Through dynamic mode decomposition analysis, we observe that the growth rates of the dominant modes in the controlled case all become negative, indicating that DRL remarkably enhances the system stability. Furthermore, tests involving various Reynolds numbers and upstream perturbations confirm that the learned control strategy is robust. Finally, the present study shows that DRL is capable of controlling VIV with a very small number of sensors, making it effective, efficient, interpretable and robust. We anticipate that DRL could provide a general framework for AFC and a deeper understanding of the underlying physics.