This paper gives, in the limit of infinite Froude number, a closed-form, analytical solution for steady, two-dimensional, irrotational, infinite-depth, free-surface, attached flow over a submerged tandem cascade of hydrofoils for arbitrary angle of attack, depth of submergence and interfoil separation. The multiply connected flow domain is conformally mapped to a concentric annulus in an auxiliary plane. The complex flow potential and its derivative, the complex velocity, are obtained in the auxiliary plane by considering their form at known special points in the flow and the required conformal mapping is determined by explicit integration, allowing accurate evaluation of various flow quantities including the lift on each foil. The circulation around the foils causes the foil array to act as a row of point vortices, or a shear layer, and so, for positive angles of attack, the flow speed at the free surface can substantially exceed the speed at depth, with the speeds simply related through the lift coefficient. Decreasing the interfoil separation decreases the disturbance to the free surface and greatly increases the lift per hydrofoil, thus allowing for the shallower operation of a hydrofoil array than of an isolated foil for a given lift requirement. Further, the flow over a hydrofoil array approaches its infinite depth form significantly more rapidly than that over an isolated foil. In contrast to the infinite-submergence case where a through-array flow can be imposed, in the finite submergence case, periodicity and the presence of the free surface mean that there is no net flow between the foils.