Let $a, b, c$ be relatively prime positive integers such that ${a}^{2} + {b}^{2} = {c}^{2} $. In 1956, Jeśmanowicz conjectured that for any positive integer $n$, the only solution of $\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is $(x, y, z)= (2, 2, 2)$. In this paper, we consider Jeśmanowicz’ conjecture for Pythagorean triples $(a, b, c)$ if $a= c- 2$ and $c$ is a Fermat prime. For example, we show that Jeśmanowicz’ conjecture is true for $(a, b, c)= (3, 4, 5)$, $(15, 8, 17)$, $(255, 32, 257)$, $(65535, 512, 65537)$.