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Abstract

We give an affirmative answer to one of the questions posed by Bourin regarding a special type of
inequality referred to as subadditivity inequalities in the case of the Hilbert–Schmidt and the trace norms.
We formulate the solution for arbitrary commuting positive operators, and we conjecture that it is true for
all unitarily invariant norms and all commuting positive operators. New related trace inequalities are also
presented.
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1. Introduction

It is known that for a nonnegative concave function f on [0,∞), the subadditivity
relation

f (a + b) ≤ f (a) + f (b)

holds for all a, b ≥ 0.
Bourin and Uchiyama [6] have obtained a noncommutative version of this

inequality for all positive operators on a finite-dimensional Hilbert space. This version
says that if A and B are positive operators, then

||| f (A + B)||| ≤ ||| f (A) + f (B)|||,

where ||| · ||| denotes any unitarily invariant norm. This result is due to Kosem [8] for
the spectral norm.

Recently, Bourin [5] has generalised this inequality to normal operators.
If A and B are normal operators and f : [0,∞)→ [0,∞) is a concave function, then

||| f (|A + B|)||| ≤ ||| f (|A|) + f (|B|)|||

for every unitarily invariant norm ||| · |||, where |X| = (X∗X)1/2.
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An important special case of the above inequality is

||| |A + B|p||| ≤ ||| |A|p + |B|p|||

for 0 < p ≤ 1 (see also [1, 3]).
This inequality prompted Bourin [4] to ask the following related questions.

Q 1.1. Given A, B ≥ 0 and p, q > 0, is it true that

|||Ap+q + Bp+q||| ≤ |||(Ap + Bp)(Aq + Bq)|||?

Bourin also wondered whether stronger inequalities like

|||Ap+q + Bp+q||| ≤ |||(Ap + Bp)1/2(Aq + Bq)(Ap + Bp)1/2|||

hold true.
Actually, we address and settle the above question affirmatively for the trace norm

‖ · ‖1 and the Hilbert–Schmidt norm ‖ · ‖2. We formulate the solution for arbitrary
commuting positive operators, and we conjecture that the above question is true for all
unitarily invariant norms and for all commuting positive operators.

C 1.2. Let A1, A2, B1, B2 ≥ 0 with A1A2 = A2A1 and B1B2 = B2B1. Then

|||A1A2 + B1B2||| ≤ |||(A1 + B1)(A2 + B2)|||.

We also wonder whether a stronger inequality holds true.

C 1.3. Let A1, A2, B1, B2 ≥ 0 with A1A2 = A2A1 and B1B2 = B2B1. Then

|||A1A2 + B1B2||| ≤ |||(A1 + B1)1/2(A2 + B2)(A1 + B1)1/2|||.

Section 4 demonstrates some new related trace inequalities.
To prove our main results, we will use some useful trace inequalities which are

presented in the following section.

2. Preliminary results

We start with some simple well-known facts that will be used in proving our main
results.

(i) If A and B are any two operators, then tr AB = tr BA.
(ii) If A, B ≥ 0, then

tr AB ≥ 0. (2.1)

(iii) If A ≥ 0 and C is any operator, then CAC∗ ≥ 0.
(iv) If A, B ≥ 0 and AB = BA, then

AB ≥ 0. (2.2)
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Other results that will be needed are the following lemmas.

L 2.1. Let A, B be any two operators such that the product AB is self-adjoint.
Then, for every unitarily invariant norm ||| · |||,

|||AB||| ≤ |||Re BA|||.

P. See [7]. �

L 2.2. Let A, B ≥ 0. Then

|||A1/2BA1/2||| ≤ |||AB|||. (2.3)

P. The proof follows by using Lemma 2.1. �

L 2.3 (Weyl’s Majorant Theorem). If X is any operator and m ∈ N, then

|tr Xm| ≤ tr |X|m.

P. See [2, p. 279]. �

Though we confine our discussion to operators on a finite-dimensional Hilbert
space, by slight modifications our results can be extended to operators on an infinite-
dimensional Hilbert space.

3. Main results

Now we use the facts of the previous section to prove our main results.
The following theorem gives the answer to the above question posed by Bourin for

the case of the trace norm in a more general setting in terms of commuting positive
operators.

T 3.1. Let A1, A2, B1, B2 ≥ 0 with A1A2 = A2A1 and B1B2 = B2B1. Then

‖A1A2 + B1B2‖1 ≤ ‖(A1 + B1)1/2(A2 + B2)(A1 + B1)1/2‖1.

P. We have

‖(A1 + B1)1/2(A2 + B2)(A1 + B1)1/2‖1

= tr(A1 + B1)1/2(A2 + B2)(A1 + B1)1/2

= tr(A1 + B1)(A2 + B2)

= tr((A1A2 + B1B2) + (A1B2 + B1A2))

≥ tr(A1A2 + B1B2) (by (2.1))

= ‖A1A2 + B1B2‖1 (by (2.2)).

This concludes the proof. �

Using (2.3), we have the following corollary.

C 3.2. Let A1, A2, B1, B2 ≥ 0 with A1A2 = A2A1 and B1B2 = B2B1. Then

‖A1A2 + B1B2‖1 ≤ ‖(A1 + B1)(A2 + B2)‖1.
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C 3.3. Let A, B ≥ 0 and p, q > 0. Then

‖Ap+q + Bp+q‖1 ≤ ‖(Ap + Bp)1/2(Aq + Bq)(Ap + Bp)1/2‖1.

C 3.4. Let A, B ≥ 0 and p, q > 0. Then

‖Ap+q + Bp+q‖1 ≤ ‖(Ap + Bp)(Aq + Bq)‖1.

The following theorem gives the answer to the same question posed by Bourin for
the case of the Hilbert–Schmidt norm in a more general setting in terms of commuting
positive operators.

T 3.5. Let A1, A2, B1, B2 ≥ 0 with A1A2 = A2A1 and B1B2 = B2B1. Then

‖A1A2 + B1B2‖2 ≤ ‖(A1 + B1)1/2(A2 + B2)(A1 + B1)1/2‖2.

P. We have

‖(A1 + B1)1/2(A2 + B2)(A1 + B1)1/2‖22

= tr((A1 + B1)1/2(A2 + B2)(A1 + B1)1/2)2

= tr(A1 + B1)1/2(A2 + B2)(A1 + B1)(A2 + B2)(A1 + B1)1/2

= tr((A1 + B1)(A2 + B2))2

= tr((A1A2 + B1B2) + (A1B2 + B1A2))2

= tr(A1A2 + B1B2)2 + 2tr(A1A2 + B1B2)(A1B2 + B1A2) + tr(A1B2 + B1A2)2

= ‖A1A2 + B1B2‖
2
2 + 2tr(A1A2A1B2 + A1A2B1A2 + B1B2A1B2 + B1B2B1A2)

+ tr(A1B2A1B2 + A1B2B1A2 + B1A2A1B2 + B1A2B1A2) (by (2.2))

≥ ‖A1A2 + B1B2‖
2
2 (by (2.1)).

This concludes the proof. �

Using (2.3), we have the following corollary.

C 3.6. Let A1, A2, B1, B2 ≥ 0 with A1A2 = A2A1 and B1B2 = B2B1. Then

‖A1A2 + B1B2‖2 ≤ ‖(A1 + B1)(A2 + B2)‖2.

C 3.7. Let A, B ≥ 0 and p, q > 0. Then

‖Ap+q + Bp+q‖2 ≤ ‖(Ap + Bp)1/2(Aq + Bq)(Ap + Bp)1/2‖2.

C 3.8. Let A, B ≥ 0 and p, q > 0. Then

‖Ap+q + Bp+q‖2 ≤ ‖(Ap + Bp)(Aq + Bq)‖2.
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4. Some new trace inequalities

We start with the following two lemmas. The second lemma contains a
generalisation of (2.1).

L 4.1. Let A, B ≥ 0 and n ∈ N. Then

(AB)nA ≥ 0 and B(AB)n ≥ 0.

P. We will prove the inequality (AB)nA ≥ 0 by induction. The proof of the second
inequality is similar.

For n = 1, it is clear that (AB)1A = ABA ≥ 0. Assume that the statement is true for
all k ≤ n, that is

(AB)kA ≥ 0

for all k ≤ n. So, in particular,
(AB)n−1A ≥ 0. (4.1)

Now let k = n + 1. By (4.1),

(AB)n+1A = (AB)((AB)n−1A)(AB)∗ ≥ 0. (4.2)

This proves the inequality for k = n + 1, and completes the proof of the lemma. �

L 4.2. Let A, B ≥ 0 and n ∈ N. Then

tr(AB)n ≥ 0.

P. By Lemma 4.1, we have (AB)n−1A ≥ 0. This, together with (2.1), implies that
tr(AB)n = tr(AB)n−1AB ≥ 0. �

It should be mentioned here that Lemma 4.2 can also be proved using the spectral
mapping theorem and the fact that the trace of an operator is the sum of its eigenvalues.

In view of (2.1) (the case n = 1 of Lemma 4.2), it is reasonable to conjecture that
if A, B,C ≥ 0, then tr ABC ≥ 0. However, this can be refuted by two-dimensional
examples. If, in addition, we assume that BC = CB, then we have the following result,
which generalises Lemma 4.2.

P 4.3. Let A, B,C ≥ 0 with BC = CB and n ∈ N. Then

tr(AB)nC ≥ 0.

P. By Lemma 4.1, we have (AB)n−1A ≥ 0. This, together with (2.1) and (2.2),
implies that tr(AB)nC = tr(AB)n−1ABC ≥ 0. �

Now we will present some new trace inequalities related to the question posed by
Bourin [4].

T 4.4. Let A1, A2, B1, B2 ≥ 0 with A1A2 = A2A1 and B1B2 = B2B1. Then

tr(A1B2 + B1A2)2 ≤ tr(A1B2 + B1A2)(A2B1 + B2A1).
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P. We have

tr(A1B2 + B1A2)2 = tr(A1B2)2 + tr(B1A2)2 + trA1B2B1A2 + trB1A2A1B2

= tr(A1B2)2 + tr(B1A2)2 + 2tr A1A2B1B2.

Using (2.1) and Lemma 4.2, it can be easily shown that tr(A1B2 + B1A2)2 ≥ 0. Now
applying Lemma 2.3 to the operator A1B2 + B1A2 with m = 2 gives the result. �

C 4.5. Let A, B ≥ 0 and p, q > 0. Then

tr(ApBq + BpAq)2 ≤ tr(ApBq + BpAq)(AqBp + BqAp).

Using an argument similar to that used in the proof of Theorem 4.4, we can prove
the following related trace inequality.

T 4.6. Let A1, A2, B1, B2 ≥ 0 with A1A2 = A2A1 and B1B2 = B2B1. Then

tr(A1B1 + B2A2)2 ≤ tr(A1B1 + B2A2)(B1A1 + A2B2).

C 4.7. Let A, B ≥ 0 and p, q > 0. Then

tr(ApBp + BqAq)2 ≤ tr(ApBp + BqAq)(BpAp + AqBq).
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