The influence of soil pH (4.3 to 7.5) on the phytotoxicity of herbicides incorporated into high organic soils was studied. Phytotoxicity increased as the soil pH increased and reached a maximum at pH 6.5 for the weak aromatic acids 3,6-dichloro-o-anisic acid (dicamba) and (2,4-dichlorophenoxy)-acetic acid (2,4-D) and the weak bases 2,4-bis(isopropylamino)-6-methoxy-s-triazine (prometone) and 3-amino-s-triazole (amitrole). Conversely, phytotoxicity increased as soil pH decreased and reached a maximum at pH 4.3 for the weak aliphatic acid 2,2-dichloropropionic acid (dalapon), the cationic herbicides 6,7-dihydrodipyrido[1,2-a:2′,1′-c]pyrazinediium ion (diquat) and 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat), and a nonionic herbicide S-propyl dipropylthiocarbamate (vernolate). Soil pH levels between 4.3 and 7.5 had no effect on the phytotoxicity of (a) the weak aromatic acids 3-amino-2,5-dichlorobenzoic acid (chloramben) and 4-amino-3,5,6-trichloropicolinic acid (picloram); and (b) the nonionic herbicides 2,6-dichlorobenzonitrile (dichlobenil), 5-bromo-3-isopropyl-6-methyluracil (isocil), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), and 4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline (nitralin). A change of one pH unit decreased the phytotoxicity of 2,4-D, dicamba, dalapon, prometone, amitrole, paraquat, and vernolate by a factor of two to four depending on the particular herbicide and the pH values considered.