Let X be a topological space, E a real or complex topological vector space, and C(X, E) the vector space of all bounded continuous E-valued functions on X; when E is the real or complex field this space will be denoted by C(X). The notion of the strict topology on C(X, E) was first introduced by Buck (1) in 1958 in the case of X locally compact and E a locally convex space. In recent years a large number of papers have appeared in the literature concerned with extending the results contained in Buck's paper. In particular, a number of these have considered the problem of characterising the strictly continuous linear functional on C(X, E); see, for example, (2), (3), (4) and (8). In this paper we suppose that X is a completely regular Hausdorff space and that E is a Hausdorff topological vector space with a non-trivial dual E′. The main result established is Theorem 3.2, where we prove a representation theorem for the strictly continuous linear functionals on the subspace Ctb(X, E) which consists of those functions f in C(X, E) such that f(X) is totally bounded.