Published online by Cambridge University Press: 20 January 2009
Recently, the first author and, independently, A. V. Jategaonkar have shown that every factor ring of U(g), the universal enveloping algebra of a finite dimensional complex Lie algebra, has a primary decomposition if g is solvable and almost algebraic. On the other hand, a suitable factor ring of U(SL(2, ℂ) fails to have a primary decomposition (1).