Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T00:36:56.143Z Has data issue: false hasContentIssue false

On the fundamental group of an almost-acyclic 2-complex

Published online by Cambridge University Press:  20 January 2009

James Howie
Affiliation:
Department of MathematicsUniversity of EdinburghEdinburgh EH9 3JZ
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A 2-complex K is called almost-acyclic if H2(K) = 0 and H1(K) is torsion-free. This class of complexes was introduced in a previous paper (2), and applied to a problem of J. H. C. Whitehead concerning aspherical 2-complexes. In this note, the methods developed in (2) are used to study the finitely-generated subgroups of the fundamental group of an almost-acyclic 2-complex.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1981

References

REFERENCES

(1)Higman, G., The units of group rings, Proc. London Math. Soc. (2) 46 (1940), 231248.CrossRefGoogle Scholar
(2)Howie, J., Aspherical and acyclic 2-complexes, J. London Math. Soc. (2) 20 (1979), 549558.CrossRefGoogle Scholar
(3)Van Kampen, E. R., On some lemmas in the theory of groups, American J. Math. 55 (1933), 268273.CrossRefGoogle Scholar
(4)Kurosch, A., The theory of groups, Volume II (Chelsea Publishing Co., 1955).Google Scholar
(5)Magnus, W., Ueber freie Faktorgruppen und freie Untergruppen gegebener Gruppen, Monatshefte f. Math. u. Phys. 47 (1939), 307313.CrossRefGoogle Scholar
(6)Rapaport, E. S., Knot-like groups, Knots, groups, and 3-manifolds, ed. Neuwirth, L. P. (Ann. Math. Studies 84, Princeton Univ. Press, 1975).Google Scholar
(7)Stammbach, U., Ueber freie Untergruppen gegebener Gruppen, Comment. Math. Helv. 43 (1968), 132136.CrossRefGoogle Scholar
(8)Strebel, R., Die Reihe der Derivierten von E-Gruppen (Diss. 5148, ETH Zurich, 1973).Google Scholar
(9)Strebel, R., Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974), 302332.Google Scholar