The fine structure of egg shells of four different genera belonging to the order Tylenchida has been examined. The species examined were Meloidogyne javanica, Rotylenchulus reniformis, Tylenchulus semipenetrans and Pratylenchus minyus. They are all similar in their basic structure, being composed of vitelline membrane, chitin and lipid layers, but there is considerable variability in the thickness of these layers.
We have retained the conventional nomenclature because of its convenience, but it is clear that these layers have a variety of chemical components. However, they do appear to contain the compounds from which they take their name. Thus chitin occurs in the chitin layer, and lipid in the lipid layer. The latter is removed by the technique used in isolating the shell from the egg. Chemical analysis of the hydrolysis products of these shells has revealed a high (35 %) proline content which appears to be a characteristic of those nematode egg shells which have been examined so far. These analyses and treatment with enzymes indicate that the chitin layer is a chitin–protein complex.
Experiments on the permeability of eggs of M. javanica at different temperatures indicate that changes in permeability are not due to the melting of a single lipid with a distinct melting point as had been thought in the past. We have found that Arrhenius activation energies calculated from the two slopes of an Arrhenius plot were 17·8 kcal/mol and 43·0 kcal/mol respectively, the transition from one to the other taking place at 62°C. We think that these changes are due to changes in the properties of lipoprotein membranes in the lipid layer. These membranes appear to be of paramount importance in controlling the permeability of the nematode egg shell.