Leading edge integrated circuits (ICs) are complicated structures designed to have up to 3 capping layers above a low k dielectric material. The upper capping layer may use TEOS and/or silicon nitride (SiN), while the lower one may use silicon carbon nitride (SiCN), silicon carbide (SiC), or carbon doped oxide (CDO) immediately above the low k dielectric. Therefore, a barrier slurry for copper CMP, in addition to exhibiting a high removal rate of the barrier, must be able to remove the upper capping layer and stop at the underlying dielectric surface.
We have developed a slurry family that can effectively remove TaN, TEOS, SiN, CDO, and/or SiCN, or any combination of these films, or can stop at any one or two film surfaces of TEOS, SiN, CDO, SiCN, and SiC, depending on the specific slurry design. Removal rate control is achieved by one or two additives. One of the additives is an anionic surfactant. When selecting a surfactant, the surfactant hydrophobicity and charge interaction between the surfactant and the wafer surface are two important factors to be considered. This report discusses these two factors in selecting a proper surfactant for a specific slurry application.